Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Схемы защит на полупроводниках




а) Бесконтактные схемы на статических элементах

Любая защита состоит из реагирующих (измерительных) орга­нов ИО и логической части ЛЧ, на выходе которой устанавли­вается выходное реле Рвых, посылаю­щее команду на отключение выключа­теля (рис. 11-43). В защитах на полупроводниковых элементах с помощью последних выпол­няются как измерительные органы, так и логическая часть, в результате чего схема защиты получается бескон­тактной.

Бесконтактные схемы, выполненные на надежных элементах, обладают боль­шей надежностью и требуют меньшего ухода, чем многоконтактные схемы с электромеханическими реле. Этими принципиальными преимуществами бесконтактных схем объяс­няется имеющаяся тенденция к их внедрению в релейной защите.

В бесконтактных схемах применяются единичные контактные реле в качестве выходных реле Рвых защиты и т. д. В последнее время для этой цели пытаются использовать как более надежные и малогабаритные герметичные, магнитоуправляемые, безъякорные реле (г е р к о н ы) [Л. 108].

Устройство основных реагирующих органов на полупровод­никах (реле тока, мощности, сопротивления) было разобрано выше. Теперь кратко рассмотрим общие вопросы по выполнению логи­ческой части схем с помощью полупроводниковых элементов.

б) Логические элементы и выполняемые ими операции

Логическая часть защиты воспринимает сигналы основных органов, реагирующих на состояние сети, и по опреде­ленной предусмотренной схемой программе в зависимости от ха­рактера и сочетания поступивших сиг­налов производит операции, обес­печивая действие или недействие за­щиты.

Логическую часть сложных защит можно подразделить на несколько со­ставных элементов, выполняющих от­дельные простейшие операции. На вход такого простейшего логического элемента ЛЭ, условно изображенного на рис. 11-44, подаются сигналы, которые при определенном сочетании вызывают появление выход­ного сигнала. Под сигналами в бесконтактных схемах на полу проводниках подразумевается появление или изменение напря­жения на зажимах логических элементов. Если логический эле­мент не работает, то напряжение на его выходе Uвых равно нулю или меньше заданного значения Uс.р. При действии элемента Uвых 0 или больше Uc. Обычно каждый сигнал обозначается определенной буквой и ему приписываются два условных цифро­вых значения: 0 и 1. Нуль означает отсутствие сигнала, а еди­ница — его появление.

Такое обозначение используется для условной записи логиче­ских функций, характеризующих зависимость выходного сигнала от входных [Л. 82—87]. Для облегчения проектирования разрабо­тана теория проектирования и анализа сложных логических схем, основанная на использовании математических дисциплин, в част­ности алгебры логики [Л. 105].

Логические схемы релейной защиты относительно просты и пока не требовали применения подобных методов анализа. Однако наименование основных логических операций и формы их записи были заимствованы из алгебры логики и стали применяться при рассмотрении бесконтактных схем защиты.

В схемах релейной защиты используются в основном три простейших логических операции, условно названные (как и в алгебре логики) ИЛИ, И, НЕ. Каждая из этих операций может выполняться с помощью контактных и бесконтактных элементов.

Схема, осуществляющая операцию ИЛИ, показана на рис. 11-45. Сигналы на входе обозначены А, В и С, авыходной сигнал — буквой X. Сигнал X на выходе схемы ИЛИ возникает при появ­лении хотя бы одного входного сигнала: или А, или В, или С.

На рис. 11-45, б приведена контактная схема, выполняющая операцию ИЛИ. Контакты электромеханических реле А, В и С соединяются в этом случае параллельно. При срабатывании любого из них появляется выходной сигнал, поступающий на следующий элемент схемы. В защите эта операция очень распространена. Например, по схеме ИЛИ выполняется пуск любой защиты (рис. 11-45, б). В этом случае реле А, В, С — пусковые.

Бесконтактная схема ИЛИ применяется в ана­логичных случаях и может выполняться с помощью активных сопротивлений, диодов или триодов. Схема ИЛИ на активных сопротивлениях r показана на рис. 11-45, в. При отсутствии напряжения Uвх, или, иначе говоря, входных сигналов на зажи­мах А, В и С сопротивлений r, напряжение Uх = 0. Это означает, что выходного сигнала нет.

При подаче напряжения Uвх хотя бы на один входной зажим А, или В, или С появляется напряжение Uх = U вх — Ur, т. е. возни­кает выходной сигнал.

Схема с диодами (рис. 11-45, г) работает аналогично. При отсут­ствии входных сигналов выходной сигнал Ux также отсутствует. В случае появления положительного сигнала (напряжения) на одном из диодов А, или В, или С последний открывается и на его выходе в точке X возникает положительный сигнал Uх = Uвх — Irд, где I и rд — ток и сопротивление открытого диода.

На рис. 11-45, д приведена схема ИЛИ на диодах, применяемая в тех случаях, когда в точке X нормально дежурит положительное напряжение +Е. Подобные условия имеют место, если элемент ИЛИ подает сигнал на триод усилителя. При подаче отрицатель­ного напряжения Uвх на один из зажимов А, или В, или С соответ­ствующий диод открывается и на выходе схемы (на зажиме X) появляется отрицательное напряжение Uх = UвхIr д. Во всех рассмотренных схемах в сопротивлении элемента ИЛИ (r или rд)

теряется часть энергии, подводимой к входу элемента. За счет этого мощность выходного сигнала получается меньше входного, происходит ослабление сигнала.

Схемы на триодах не рассматриваются, так как они приме­няются редко.

В алгебре логики операция ИЛИ называется также логической суммой и обозначается знаком «+» или V. Она записывается в общем виде уравнением: А + В + С = X, где «+» читается как ИЛИ. Условное изображение элемента ИЛИ, применяемое в струк­турных схемах, приведено на рис. 11-45, а.

Схемы, выполняющие операцию И (рис. 11-46). Сигнал X на выходе этой схемы возникает только при одновременном появлении сигналов на всех входах схемы и В на рис. 11-46). Подобная операция имеет место, например, в схеме максимальной направлен­ной защиты, которая посылает импульс на реле времени, если сработает токовое реле и реле мощности, или в схеме дистан ционной защиты, которая приходит в действие, если сработают пусковой орган защиты и дистанционный, и т. д.

В контактных схемах операция И выполняется последова­тельным соединением контактов реле А и В (рис. 11-46, б).

Схема И с двумя входными сигналами А и В, построенная на диодах, показана на рис. 11-46, в. Нормально сигналы А и В отсутствуют. При появлении сигнала А в виде положительного напряжения UсА диод Д1 открывается и по сопротивлениям R1, R2 проходит ток.

Потенциал точки X равен падению напряжения на R2, его величина мала и недостаточна для приведения в действие эле­мента, подключенного к выходу схемы X.

При появлении одного (положительного) сигнала В диод Д1 закрыт и не пропускает сигнал В в точку X. Если же сигналы А и В появятся одновременно, то сигнал В закроет диод Д1, высокий положительный потенциал от сигнала А попадет в точку X и поступит на элемент, подключенный к выходу схемы.

Аналогично работает второй вариант схемы И, изображенной на рис. 11-46, г. При отсутствии сигналов А и В диоды. Д1 и Д2 открыты. Выходное напряжение Uх равно падению напряжения в R1 и R2, оно близко к нулю и недостаточно для действия элемента, подсоединенного к выходу схемы. При появлении одного из сигналов или В) напряжение Uх не меняется. Если же появятся два положительных сигнала А и В и величина каждого сигнала Uса и Uсв > Uо п, то оба диода закроются и на выходе схемы появится напряжение Uх= Uоп, достаточное для действия элемента N.

В третьем варианте (рис. 11-46, д) напряжение Uх на выходе схемы (в точке X) появляется только при условии, что на в с е входные зажимы схемы А и В поданы напряжения положитель­ного знака: ЕА и Ев > Еоп. В этом случае диоды Да и Дв заперты и Uх = Uоп. При появлении только одного сигнала, например ЕА, диод Дв, не имеющий сигнала, под действием Еоп открыт и шунтирует выходные зажимы X — 0, поэтому напряжение Uх — 0 и выходной сигнал отсутствует.

Условное изображение схемы И показано на рис. 11-46, о. В алгебре логики операция И рассматривается как логическое умножение, обозначае­мое знаком или ^.

Условная запись этой операции имеет вид А X В = X, где знак умноже­ния X читается как И.

Схема, выполняющая операцию НЕ или НЕТ (рис. 11-47). При отсутствии входного сигнала А (рис. 11-47, а) на выходе схемы имеется сигнал X, при появлении входного сигнала А сигнал на выходе схемы исчезает. Сигнал X будет, если не будет сигнала А.

Примером операции НЕ может служить схема блокировки защиты от исчезновения напряжения (рис. 11-47, б). Нормально через замкнутые контакты реле Н на защиту подается плюс. В слу­чае обрыва цепи напряжения (по­является сигнал А) реле Н сраба­тывает, его контакты размыкаются и снимают плюс с защиты.

Аналогичная операция в бес­контактных схемах имеет много вариантов исполнения. На рис. 11-47, в показана схема НЕ, выпол­няемая с помощью транзистора Т. Нормально на базу Т подано по­ложительное смещение. Триод Т закрыт. На выходе схемы X под­держивается отрицательное напряжение, поступающее через R2. При подаче на вход схемы А отрицательного сигнала триод откры­вается и шунтирует выход схемы. Напряжение в точке X падает до нуля (если принять, что сопротивление открытого триода R= 0). Условное изображение схемы НЕ показано на рис. 11-47. В алгебре логики операция НЕ называется логическим отрицанием или инверсией и записывается в виде уравнения X = .

Элемент НЕ преобразует поступающий на вход сигнал на обрат­ный по величине и знаку. Например, если на входе, т. е. на базе триода, сигнал отсутствует и положительным смещением (+Ес) триод заперт, то напряжение на выходе триода эмиттер — кол­лектор отлично от нуля, а зажим X имеет отрицательный знак. Если же на вход подан отрицательный потенциал Uа≥EC, то триод открыт, напряжение эмиттер — коллектор равно нулю и зажим X имеет положительный потенциал, т. е. обратный входному. Это свойство элемента НЕ, выпол­ненного на триоде, называют инвертированием сигнала, а сам элемент НЕ — инвертором. Такое название нельзя считать точным, так как в электротехнике инвертором называют устройство, преобразующее постоянный ток в переменный.

в) Дополнительные функциональные элементы логических схем

Кроме основных логических элементов ИЛИ, И, НЕ имеются дополнительные элементы. В качестве дополнительных элементов логических схем применяются: усилители сигналов; элементы замедления на срабатывание и возврат (осуществляющие функции реле времени и промежуточных реле замедленного действия); релейные элементы, реагирую­щие на появление сигнала; элементы памяти.

Усилители служат для увеличения мощности выходных сигна­лов до значения, необходимого для надежного действия элементов схемы, реагирующих на этот сигнал. Усилители применяются на выходе схем сравнения измерительных органов для обеспечения надежной работы реагирующего элемента и на выходе логических схем (ИЛИ и И) в активных сопротивлениях, в которых, как указы­валось выше, теряется значительная мощность приходящих сиг­налов.

В логических схемах обычно используются однокаскадные усилители с нормально открытым или закрытым транзистором. Для усиления сигнала в измерительных органах в большинстве случаев применяются двух- и трехкаскадные усилители.

Однокаскадный усилитель с нормально закрытым транзисто­ром Т1 показан на рис. 11-48, а. Транзистор Т1 включен по схеме с общим эмиттером1, так как эта схема по сравнению со схемами с общей базой и общим коллектором (рис. 11-48, в и г) обеспечивает наибольший коэффициент усиления по мощности.

На входные зажимы 1 и 2 (база — эмиттер) подается положи­тельное относительно эмиттера напряжение смещения + Ес и управляющий сигнал Uвх, противоположный по отношению к Ес полярности (рис. 11-48, а). Результирующее напряжение база — эмиттер

Uбс-Uвх (11-45)

Коллектор транзистора с проводимостью р-п-р должен полу­чать отрицательный по отношению к эмиттеру потенциал — Ек, напряжение между коллектором и эмиттером Uэ. к является выход­ным напряжением усилителя и, как видно из схемы, равно:

Uэ.к = Uвых = Eк-IкRк. (11-46)

При U вх = 0 на базу подается положительное смещение Ес, запирающее триод. В этом случае ток коллектора, питающий нагрузку, Iк = 0, а коллекторное напряжение Uk = — Ек (при этом потенциал точки 3 имеет отрицательный знак).

При появлении входного сигнала Uвх > Еc напряжение на базе (база — эмиттер) согласно (11-45) становится отрицательным, триод Т1 открывается, в нагрузке Rк появляется ток коллектора Ik выходное напряжение согласно (11-46) уменьшается и в пределе при полном открытии триода становится равным нулю, если пре небречь очень малым внутренним сопротивлением открытого три­ода. Величина коллекторного тока Iк будет меняться с изменением тока базы Iб (или напряжения базы Uб) (рис. 11-48, д)

Эта характеристика показывает, что при Iб = Iб.нас ток Iк достигает максимального значения (Iк.макс = Ек/Rк) и при даль­нейшем росте Iб не изменяется. Точке В соответствует (рис. 11-48,д) полное открытие триода. Этот режим называется режимом «н а с ы щ е н и я».

Начальной точке А кривой Iк = f(Iб) соответствует полное закрытие триода. Этот режим работы триода называется ре­жимом «о т с е ч к и». В промежутке между точками А и В триод работает в режиме линейного усиления

Усиление тока, осуществляемое усилителем, характеризуется коэффициентом усиления тока β = Ik/Iб. Величина β в зависи­мости от типа триода лежит в пределах от 10 до 100. Усиление по мощности определяется отношением выходной мощности Рвых = I2kRвых к входной Рвх = I2бRвых ЦВВХ с учетом, что Iк = βIб получим коэффициент усиления по мощности:

 

 

Различают два режима работы усилителя: режим линей­ного усиления, при котором триод работает на прямоли­нейном участке А В кривой Iк = f (Iб), и ключевой режим, когда триод нормально закрыт, а при появлении входного сигнала Uвх, которому соответствует Iб > Iб.нас, скачком переходит в режим насыщения и полностью открывается (рис. 11-48, д).

В этом режиме триод работает как ключ или контактное реле, замыкающее и размыкающее цепь нагрузки (рис. 11-48, ё). Поэтому такой режим работы усилителя называется ключевым или релейным. В схемах релейной защиты усилители обычно ра­ботают в ключевом режиме. Параметры усилителя, работающего в ключевом режиме, подбираются так, чтобы при появлении вход­ного сигнала Uвх (рис. 11-48, д) триод полностью открывался и да­вал на выходе ток Iк.маkс.

Усилитель снормально открытым триодом показан на рис. 11-48, б. Нормально при отсутствии входного сигнала (Uвх = 0) триод Т1 открыт отрицатель

1 В этой схеме эмиттер непосредственно связан с входным 2 и с выход­ным зажимом 4 триода, т. е. является общим элементом входа я выхода схемы. Потенциал общих выводов 2, 4 условно принимается равным нулю.

ным напряжением (током), поданным через сопротивление R2 на базу триода. Сопротивление триода в этом режиме равно нулю, и поэтому нагрузка Rн, подключенная на выходные зажимы 2 и 4. зашунтирована.

Двухкаскадные усилители. Принцип выполнения и работа двухкаскадного усилителя были рассмотрены в § 2.

Триггер 1. В бесконтактных схемах релейной защиты находят применение двухкаскадные усилители с положительной обрат­ной связью, работающие в релейном режиме. Такие схемы, называемые триггерами, переходят из состояния недействия (Uвых = 0) в состояние работы (Uвых= U) мгновенно (скачкообраз­но), если входное напряжение достигает определенного значения: Uвх ≥ Uс.p. При снижении Uвх до Uвоз выходное напряжение Uвых мгновенно падает до нуля и схема возвращается в исходное состояние.

Такая схема работает как обычное электромеханическое реле. Наряду с подобными самовозвращающимися схемами, называе­мыми схемами с одним устойчивым состоянием, применяются триггерные схемы с двумя устойчивыми состояниями, действующие так же, как и предыдущая схема. Она мгновенно переходит в новое состояние при появлении Uвх ≥ Uс. p, но остается в новом положе­нии как угодно долго, пока не появится новый сигнал, возвра­щающий ее в первоначальное состояние.

Подобные схемы позво­ляют фиксировать появление сигнала, «запомнить» его.

 

Имеется и третья разновидность — это схема с одним устойчи­вым состоянием, возвращающаяся в начальное положение через определенное время tвоз. Такие схемы используются в качестве элемента с замедленным возвратом, фиксирующего на некоторое время появление сигнала.


 

На рис. 11-49, а и б приведены схема и характеристика работы триггера с одним устойчивым состоянием и самовозвратом, выпол­няющего функции бесконтактного реле. Особенностью схемы яв­ляется наличие обратной связи, осуществляемой с помощью сопро­тивления Rэ, через которое проходят эмиттерные токи Iэ1 и IЭ2 обоих триодов T1 и Т2.

Состояние схемы — недействие, срабатывание, возврат — зависят, как уже было отмечено, от значе­ния Uвх. При Uвх = 0 триод Т1 закрыт, а Т2 под действием отрицатель­ного потенциала, подаваемого на его базу через сопротивление R3, открыт. По сопротивлению Rэ протекает эмиттерный ток Iэ2 открытого триода Т2.

__________________

1 Триггер — (trigger), английское слово, означающее в переводе спус­ковое устройство, курок (ружья); образно характеризует принцип дей­ствия схемы.

 

Ток Iэ2 создает падение напряжения на за­жимах Rэ Uэ = Iэ2RЭ= U'э. Принимая внутреннее сопротивление открытого триода Т2 равным нулю, можно считать, что (рис. 11-49,а) и UвыхUэ. Это напряжение мало и недостаточно для создания выходного сигнала, соответствующего срабатыванию схемы. Триггер находится в состоянии недействия. Напряжение U'э через сопротивления R6, R1 и R2 прикладывается между эмит­тером и базой триода T1, запирая последний. Это состояние триггера характеризуется на диаграмме работы триггера точкой 1.

Для срабатывания триггера необходимо подать на его входные зажимы 1 и 2 напряжение Uвх= Uс. p (точка 2 на рис. 11-49, б). Это напряжение должно быть противоположно по знаку и равно по величине или больше напряжения U'э, запирающего триод Т1. В результате этого триод Т1 начинает открываться, его сопротивление уменьшается, при этом отрицательный потен­циал, подаваемый через сопротивление R3 на коллектор T1 и на базу T2, начинает уменьшаться. Вследствие этого триод Т2 начи­нает закрываться, ток эмиттера Iэ2 уменьшается, что влечет за собой уменьшение напряжения Uэ, определяющего смещение на базе Т1. Это способствует открытию триода T1 и закрытию триода Т2 из-за снижения отрицательного потенциала на базе последнего. Процесс протекает лавинообразно и завершается полным откры­тием T1 и закрытием Т2.

В результате закрытия Т2 Uвыхскачком увеличивается до Ек (точка 3 на рис. 11-49,6). Триггер сработал. Дальнейшее увеличение Uвх> Uс. p не изменит Uвых, так как оно достигло своего предельного значения Ек. Теперь Uэ = Iэ1Rэ= U"э.

При уменьшении Uвх, подводимого к базе Т1, до Uвх> U"э потенциал базы Т1 становится положительным и триод Т1 начинает закрываться. В результате этого потенциал на базе Т2 начинает уменьшаться, вызывая открытие Т2. Как и в предыдущем случае, процесс нарастает лавинообразно, завершаясь закрытием Т1 и открытием Т2, Выходное напряжение Uвых скачкообразно падает от Ек до U'э, и схема возвращается в начальное состояние.

Лавинообразный процесс закрытия и открытия триодов про­исходит практически мгновенно, т. е. скачком, как это требуется от устройства, работающего в релейном режиме.

Характеристика триггера на рис. 11-49, б является типовой характеристикой бесконтактного реле. При увеличении входного напряжения от нуля до Uс. p = U'э выходное напряжение скачком изменяется от Uвых1 до предельного значения Uвых3 = Ек иреле срабатывает. Напряжение, при котором происходит скачкообраз­ное увеличение выходного напряжения, называется напряже­нием срабатывания бесконтактного реле. При уменьше­нии входного напряжения от Uс. p до Uвоз= U"э выходное напря­жение скачком падает от Uвых3 до Uвых1 (точка 5); это означает, что бесконтактное реле вернулось в начальное положение. Соот­ветствующее этому входное напряжение U"э называется напряже­нием возврата бесконтактного реле.

 

г) Логические схемы на типовых элементах


По условию производства, конструирования и эксплуатации целесообразна типизация логических схем и выполнение их на унифицированных типовых элементах. В этом направлении ве­дутся разработки, в частности для промышленной автоматики предложена серия логических элементов [Л. 54, 82] системы ЛОГИКА.

Эти серии могут использоваться и в устройствах релей­ной защиты. В качестве основного типового элемента в системе ЛОГИКА принят элемент, построенный на сочетании двух логи­ческих схем ИЛИ и НЕ. С учетом, что схема НЕ осуществляет инверсию сигнала, такой типовой элемент называется также «ИЛИ с инверсией».

Схема ИЛИ выполнена на активных сопротивлениях R, а схема НЕ — на полупроводниковом триоде типа р-п-р. Все остальные элементы логических схем выполняются в виде различных сочета­ний этого типового элемента.

Схема элемента ИЛИНЕ приведена на рис. 11-50, а. Здесь показано два элемента ИЛИНЕ 1 и 2. На вход А, В, С эле­мента 1 подается сигнал отрицательного знака по отношению к общей точке схемы 0 ( Uвх< 0). При отсутствии сигнала Uвх= 0, на базу триода Т1 подано положительное напряжение смещения + Есм, триод Т1 заперт и на его выходе имеется напряжение

Uвых= Uк= — Ек.

При появлении отрицательного сигнала Uвх> Есм триод Т1 открывается и Uвых= 0. Такой элемент ИЛИНЕ обладает важной особенностью. При подаче на его вход сигнала Uвх, условно принимаемого равным 1, выходной сигнал отсутствует, Uвых= 0, а при входном сигнале Uвх = 0 выходной сигнал отличен от нуля (или условно Uвых = 1). Эта особенность должна учитываться при образовании логических схем ИЛИ, И, НЕ, путем сочетания типо­вых элементов «ИЛИ с инверсией».

Так, для осуществления логической опе­рации ИЛИ необходимо соединить последовательно два эле­мента ИЛИНЕ (элементы 1 и 2 на рис. 11-50). Тогда при подаче на зажимы А, или В, или С элемента 1 отрицательного сигнала — Uвхтриод Т1 открывается, а триод Т2 закрывается, в результате чего на выходе элемента 2 появляется сигнал Uвых= Ек. При Uвх = 0 сигнал на выходе элемента 1 равен 1, а на выходе элемента 2 равен 0. Таким образом, рассмотренное сочетание двух элементов ИЛИНЕ действует как логическая схема ИЛИ, при этом нали­чие триодов позволяет усилить сигнал элемента ИЛИ, компенсируя ослабление входного сигнала в сопротивлениях R схемы.

Логическая операция И для двух сигналов А и В осуществляется путем соединения элементов ИЛИ — НЕ по схеме 11-50, б. В этой схеме каждый элемент 1 и 2 преобразует входные сигналы, равные 1, в сигнал, равный 0, а элемент 3 преобразует 0 на выходе в сигнал, равный 1. Выходы триодов элементов 1 и 2 соединены параллельно, поэтому входной сигнал на элементе 3 равен 0 только при условии, что выходные сигналы элемента 1 и элемента 2 равны 1. В этом случае на выходе элемента 3 появится сигнал, равный 1. Если же хотя бы народном иаэлементов 1 или 2 сигнал равен 0, то сигнал на входе элемента 3 равен 1, а на выходе элемента 3 — 0.

Элементы серии ЛОГИКА следует рассматривать как пример типовых элементов. Окончательных общепринятых типовых эле­ментов пока еще не создано.

Элементы выдержки времени. В качестве элемента выдержки времени в схемах на полупроводниках применяются конденсатор­ные реле времени, в которых для создания выдержки времени 1Р используется продолжительность заряда (или разряда) конден­сатора С, включенного последовательно с активным сопротивле­нием R.

Принцип устройства реле времени, осно­ванного на заряде конденсатора, показан на рис. 11-51. Реле состоит из зарядной цепи RС, делителя напряжения на сопротивле­ниях R1 и R2 и реагирующего органа (нуль-индикатора) РО, вклю­ченного между точками а и b через диод Д. Нормально конденсатор зашунтирован пусковым устройством П, напряжение Uс = О, при этом потенциал точки а больше потенциала точки b (Uа > Ub), поэтому диод Д заперт и ток в РО отсутствует.


При появлении сигнала на входе реле времени пусковое устрой­ство П срабатывает и дешунтирует конденсатор С, после чего он начинает заряжаться током I3, протекающим по контуру RС. При этом напряжение Uс растет по экспоненциальному закону:

Графически зависимость Uс = f(t) показана на рис. 11-51, б. По мере заряда конденсатора потенциал в точке а приближается к потенциалу точки b. Когда Uс достигнет напряжения на сопротив­лении R1 делителя напряжения (U1 на рис. 11-51, б), потенциалы точек а и b уравниваются, затем U а = UUс станет меньше Ub, тогда диод Д откроется и реагирующий орган сработает. Время, в течение которого конденсатор С заряжается до напряже­ния точки в делителя, является выдержкой времени реле (tр), а Uс = U1 = Uс. p.

Аналитически значение tр можно получить из (11-47), приняв Uс = Uс.p

Из (11-48) и рис. 11-51, б следует, что tрзависит от С, R, Uс. p и U. Выдержка времени реле обычно регулируется изменением R, что меняет скорость нарастания Uс. При прекращении входного сигнала пусковое устройство П вновь шунтирует конденсатор С, он разряжается и нуль-индикатор прекращает свою работу (реле времени возвращается). Разряд продолжается в течение сотых до­лей секунды, после чего реле вновь готово к действию.

Основная трудность выполнения конденсаторного реле времени состоит в обеспечении его точности. Погрешность реле времени, применяемых в релейной защите, должна удовлетворять условию Δt≤ 0,1 ÷ 0,2 с.

Для получения требуемой точности необходимо:

 

1) обеспечить стабильность емкости С и тока утечки конден­
сатора С, сопротивления R, питающего напряжения U и напряже­
ния срабатывания Uс. p;

2) иметь отношение Uс. p / U ≤ 0,63, при этом реле работает на крутой части характеристики Uс =f(t) и колебания Uс. p весьма незначи­тельно влияют на изме­нение tр;

3) исключить влия­ние подпитки конденсатора С в процессе его заряда через побочные цепи, кроме цепи RС.

На рассмотренном принципе разработано большое количество вариантов схем исполнения реле времени.

В виде примера реле времени, применяемого в схемах защиты, приведена конструкция реле, разработанного ВНИИЭ (рис. 11-52).

 

 

Реле состоит из пускового устройства, выполненного с помощью тран­зистора (триода) Т1 типа р-n-р, зарядного контура R С, делителя напряжения Д3—Д6 и реагирующего нуль-индикатора, выполненного посредством три­одов Т2 и Т3 типа п-р-п. Точки а и b соответствуют тем же точкам на схеме рис. 11-51.

Нормально триод Т1 и диод Д1 открыты и шунтируют емкость С. На базу триода Т2 подается положительное по отношению к эмиттеру смещение через резистор R3, и он открывается током базы, замыкающимся по этому сопротив­лению. При этом на базу Т3 через открытый триод Т2 подается отрицатель­ный по отношению к эмиттеру потенциал, вследствие чего триод Т3 закры­вается и ток в реле Р отсутствует. Диод Д2 закрыт, так как на него подано напряжение обратного знака. При поступлении сигнала А на вход реле вре­мени триод Т1 закрывается и конденсатор С начинает заряжаться. Диоды Д1 и Д2 закрыты, поэтому процесс заряда зависит только от параметров кон­тура RС. Когда потенциалы точек a и b сравняются, диод Д2 откроется и по­даст напряжение точки а к базе триода Г2- Параметры цепей подобраны так, что потенциал точки а получается ниже потенциала точки b, поэтому триод T2 закрывается.

В результате этого база триода Т3 получает положительный потенциал через сопротивление R4. Триод Т3 открывается, и в реле Р появляется ток коллектора, под действием которого оно срабатывает. При снятии сигнала А триоды Тг, Т2, Т3 возвращаются в первоначальное состояние, а конденсатор С разряжается за 0,02 с. Напряжение, питающее схему реле времени, ста­билизируется с помощью опорных диодов Д3Д6.

Данное реле имеет выдержку времени до 9 с. Погрешность реле не более ±0,15 с при изменении температуры от 25 до +50 °С.

 

д) Примеры схем бесконтактных релейных защит на полупро­водниках

В качестве примера бесконтактной защиты на полупроводни­ках, разработанной ВНИИЭлектропривод на типовых элементах ЛОГИКА, в приложении приводится схема максимальной защиты, выпускаемая ЧЭАЗ для линий 6—10 кВ. Ниже приводится более сложная схема одноступенчатой трехсистемной дистанционной за­щиты, разработанная ВНИИЭ [Л. 56]. Эта защита предназначена для использования в качестве резервной от междуфазных к. з. на линиях 110—220 кВ.


Структурная схема защиты представлена на рис. 11-53. Защита состоит из дистанционного органа 1, выполнен­ного с помощью трех направленных реле сопротивления с эллипти-

ческой характеристикой; пускового органа 2, реагирующего на I2 и I0; логической схемы 3, осуществляемой с помощью элементов ИЛИ, И и усилителей У; конденсаторного реле времени 4 и испол­нительного органа 5. Все элементы схемы выполнены на полупро­водниках, кроме исполнительного органа, в качестве которого ис­пользуется электромеханическое реле типа РП-7.

Реле сопротивления РС действуют на элемент ИЛИ, выполнен­ный на трех диодах по схеме рис. 11-45. Для увеличения мощности выход схемы ИЛИ1 заведен на усилитель У1.

Пусковое реле в данной защите не является обязательным, поскольку дистанционный орган защиты отстроен от нагрузки. Пусковой орган предусмотрен для исключения неправильной ра­боты защиты при нарушениях в питающих ее цепях напряжения и отстройки от нагрузки и качаний в симметричном режиме. Выход­ной сигнал пускового реле I2 и I0 воздействует на элемент времен­ной памяти ВП, который как бы запоминает полученный сигнал и продолжает его передавать в течение 0,1 с после прекращения дей­ствия реле I2 и I0. Такая работа ВП равносильна замедлению воз­врата пускового реле и необходима Для надежного действия последнего при трехфазных к. з., когда токи несимметрии I2 и I0 воз­никают кратковременно, лишь в начале к. з., в течение 0,01—0,03 с.

Защита приходит в действие, если на элемент И поступает вход­ной сигнал от пускового органа (через элемент ИЛИ2) и от дистан­ционного органа одновременно. Возникающий при этом выходной сигнал на элементе И усиливается усилителем У2 и подается на реле времени В. По истечении заданной выдержки времени t3 реле вре­мени срабатывает и посылает сигнал на исполнительный орган, который с помощью поляризованного реле РП-7 дает команду на отключение выключателя линии.

Для обеспечения действия защиты при симметричных трехфаз­ных к. з., когда импульс, подаваемый пусковым органом (реаги­рующим на первоначальную несимметрию), прекращается значи­тельно раньше, чем срабатывает реле времени защиты, предусмот­рена обратная связь с выхода усилителя У2. Одновременно с пода­чей сигнала на реле времени по цепи обратной связи подается сиг­нал на элемент ИЛИ2, Благодаря этому при трехфазных к. з. после прекращения сигнала от пускового органа элемент ИЛИ2 будет продолжать посылку сигнала на элемент И за счет обратной связи. Таким образом, создается своеобразная цепь самоудерживания от дистанционных органов схемы, обеспечивающая действие защиты при кратковременном срабатывании пускового органа.

Полные схемы элементов защит показаны на рис. 11-54 и 11-55.

Пусковой орган (рис. 11-54) реагирует на I 2 и I0, которые полу­чаются от фильтра обратной последовательности Ф2 и трансформатора Т0 и выпрямляются мостами В1 и Вг. На стороне выпрямленного тока мосты соеди­нены параллельно. Для сглаживания выпрямленного напряжения предусмот­рен конденсатор С3. Напряжение между точками 1 и 2 (рис. 11-54) определя­ется величиной большого тока (I2 или I0).

Реагирующим элементом пускового органа, обладающим временной памятью, являются триоды Т3 и Т4.

Параметры сопротивлений (R12R10 и R14R11) подобраны таким образом, что потенциал эмиттера триода Т3 при отсутствии I2 и I0 получается выше потенциала базы, вследствие чего триод Т3 закрыт. При этом на базу Т4 подается положительный потенциал (через R15). Триод T4 открыт и напря­жение на выходных зажимах органа 11-7 равно нулю, так как они зашунтированы открытым триодом T4.

При появлении Iг или I0 выпрямленный ток I замыкается по сопротивле­нию R10 и на его зажимах появляется напряжение U = IR10, пропорциональ­ное этим токам. При определенном значении I2 или I0 потенциал точки 2 повышается настолько, что диод Д6 закрывается, вызывая увеличение потен­циала в точке 3. В результате этого триод Т3 открывается, а триод Т4 вслед­ствие понижения потенциала в точке 4 закрывается, размыкая цепь между II и 7. На выходе пускового органа (точки II и 7) появляется напряжение, означающее, что он сработал.

При исчезновении I2 и I0 триод Т3 снова закрывается. Но благодаря памяти, осуществленной с помощью заряженного конденсатора С5, Т4 откры­вается не сразу, а только через 0,01 с, пока не разрядится С5. Эта емкость была заряжена при предшествующем открытии триода Т3 током, протекавшим по цепи С5R11. Потенциал точки 4, от которого зависит состояние триода Т4, по мере разряда емкости С5 повышается. По окончании разряда, продолжающегося 0,01 с, потенциалы точек 4 и 7 (базы и эмиттера) становятся равными, триод T4 открывается и выходное пряжение (сигнал) на зажимах 11-7 исчезает. Таким образом, с помощью конденсатора С5 осуществляется временное запоминание появления I2 или I0. Регулирование уставки срабатывания реле производится изменением напряжения, снимаемого с фильтров обратной I2 и нулевой I0 последовательностей.

  на

Д и с т а н ц и о н н ы й о р г а н. В качестве реле сопротивлений РС (рис.11-54) применяются реле, рассмотренные в § 11-6. Они включаются на междуфазное напряжение и разность фазных токов по табл. 11-1.

Реле РС состоит из промежуточного трансформатора напряжения ТН и трансформаторов ТР, с помощью которых получаются напряжения U 1 и U II.

Эти напряжения выпрямляются выпрямителями В3 и В4, а затем сравниваются посредством схемы сравнения, построенной на балансе напряжения. На вы­ходных зажимах тип получается напряжение тп = | 1| — | II |, подво­димое к нуль-индикатору.

Нуль-индикатор является двухкаскадным усилителем на триодах Т1 (типа р-п-р) и Т2(типа п-р-п).

Триод Т2 является общим для всех трех реле РС. Для этого выходной зажим 1 триода Т1 каждого реле связан с базой Т2 через диод Д5 по схеме ИЛИ.


При отсутствии напряжения на зажимах m и n или при его отрицатель­ном знаке триод Т1 открыт, на диоды Д5 подается обратное напряжение и они закрываются. База триода Т2 имеет по отношению к эмиттеру положитель­ный потенциал (через R5), поэтому триод Т2 открыт и напряжение на выход­ных зажимах 1—3 равно нулю.

При появлении положительного напряжения на выходе схемы сравне­ния (зажимы m и n) триод Т1 закрывается. Конденсатор С2 начинает заря­жаться, и когда потенциал точки 7 станет равным потенциалу в точке 3, диод Д5 откроется, в результате чего потенциал базы Т2 станет ниже потен­циала эмиттера и триод Т2 откроется. На выходных зажимах 1—3 появляется напряжение, воздействующее на логическую часть защиты.

Конденсаторы С1 служат для регулирования величины малой оси эллип­тической характеристики срабатывания реле. Конденсатор С2 создает замед­ление срабатывания реле на 0,1 с.

Логическая схема защиты изображена на рис. 11-55. Она состоит из логических элементов ИЛИ2 (рис. 11-53) и И (R21, R22, R23, R29, Д8, Д9), усилителя У2 (рис. 11-53), реле времени РВ и выходного реле РП.

К зажиму 1 схемы подается сигнал от дистанционного органа, а к за­жиму II — от пускового. Сопротивления R21 и R29 образуют элемент ИЛИ2, выходом которого является точка 8. При появлении сигнала // от пускового органа ИЛИ от обратной связи через сопротивление R29 в точке 8 появляется напряжение.

Точка 9 является выходом элемента И2 и одновременно входом усили­теля У2, состоящего из двух триодов Т5 и Т6. Элемент И образуется с помощью диода Д9 и сопротивления R22, по которому поступает сигнал 1 от дистанци­онного органа, и точки 8, с которой приходит сигнал II от пускового реле.

Если пусковой и дистанционные органы защиты не действуют, то сигналы I и II отсутствуют. При этом потенциал базы триода Т5 (точка 9) ниже, чем у его эмиттера (точка 7), вследствие чего Т5 закрыт. Закрыт также и диод Д9 поскольку на него подано обратное напряжение. Усилитель У2 и реле времени не работают. В случае появления сигнала // потенциал точки 9 (от которого зависит работа Т5) не меняется, так как диод Д9 закрыт и не пропускает сигнал //. При появлении сигнала / потенциал зажима / повы­шается, но при этом открывается диод Д9, в результате чего потенциал точки 9 остается ниже точки 7 и триод Т5 не работает.

При действии пускового и дистанционного органов сигналы / и // появ­ляются одновременно. Сигнал // держит диод Д9 запертым, и благодаря этому под влиянием сигнала / потенциал точки 9 повышается.

Таким образом, на выходе элемента И появляется сигнал, в результате которого триод Т5 открывается, а Т6 закрывается. Это вызывает повышение потенциала, т. е. появление сигнала на выходном зажиме /// усилителя У2.

При появлении сигнала /// триод Т7 закрывается и дешунтирует кон­денсатор С8, чем осуществляется пуск реле времени. Последнее работает так же, как и схема на рис. 11-52.

Нуль-индикатор реле времени состоит из триодов Т8 и Т9. При срабаты­
вании реле времени (т. е. открытии триода Т9) под действием коллекторного
тока триода Т9 приходит в действие выходное реле РП, которое подает им­
пульс на отключение.

Сигнал /// по цепи обратной связи R29 поддерживает повышенный потен­циал в точке 8, не позволяющий работать диоду Д9. Таким образом поддер­живается работа У2 и реле времени при трехфазных к. з., сопровождающихся кратковременным появлением сигнала II.

Рассмотренная защита имеет в 4 раза меньшие габариты по сравнению с аналогичной одноступенчатой дистанционной защитой с реле типа КРС-131. Потребление цепей напряжения защиты равно 3 В·А, а токовых цепей со­ставляет 1 В • А при токе 5 А. Для устранения мертвой зоны предусматри­вается смещение характеристики реле сопротивления в IIIквадранте при­мерно на 10%. Угол φм.ч имеет две уставки: 60 и 80°.




Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 1427; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.118 сек.