КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Свойства операции нахождения декартова произведения
Декартово произведение множеств ТЕМА 2.2. ДЕКАРТОВО ПРОИЗВЕДЕНИЕ МНОЖЕСТВ Содержание 1. Декартово произведение множеств. 2. Свойства операции декартова произведения. 3. Кортеж. Длина кортежа. Основная литература [7, 10, 11, 16, 23, 33, 34]; Дополнительная литература [17, 18, 27, 50, 81, 84, 82, 86, 87] Используя две цифры, например, 3 и 5, можно записать четыре двузначных числа: 35, 53, 33 и 55. Несмотря на то, что числа 35 и 53 записаны с помощью одних и тех же цифр, эти числа различные. В том случае, когда важен порядок следования элементов, в математике говорят об упорядоченных наборах элементов. В рассмотренном примере мы имели дело с упорядоченными парами. Упорядоченную пару, образованную из элементов a и b, принято записывать, используя круглые скобки: (a; b). Элемент a называют первой координатой (компонентой) пары, а элемент b – второй координатой (компонентой) пары. Пары (а; b) и (с; d) равны в том и только том случае, когда а = с и b = d. В упорядоченной паре (а; в) может быть, что а = в. Так, запись чисел 33 и 55 можно рассматривать как упорядоченные пары (3; 3) и (5; 5). Упорядоченные пары можно образовывать как из элементов одного множества, так и двух множеств. Пример Даны множества А={1,2,3}, В={3,5}. Образовать упорядоченные пары так, чтобы первая компонента принадлежала множеству А, а вторая – множеству В. Перечислив все такие пары, получим множество: {(1; 3), (1; 5), (2; 3), (2; 5), (3;3), (3;5)}. Видим, что имея два множества А и В, мы получили новое множество, элементами которого являются упорядоченные пары чисел. Это множество называют декартовым произведением множеств А и В. Определение. Декартовым произведением множеств А и В называется множество всех пар, первая компонента которых принадлежит множеству А, а вторая компонента принадлежит множеству В. Декартово произведение множеств А и В обозначают А´B. Используя это обозначение, определение произведения можно записать так: A´B={(х; у) | х ÎA и у Î B}. Пример Найти декартово произведение множеств А и В, если: а) А = {m, p}, B={e, f, k}; b) A = B={3, 5}. Решение. а) Действуем согласно определению – образуем все пары, первая компонента которых выбирается из А, а вторая – из В: А ´ B = {(m; p); (m; f); (m; k); (p; e); (p; f);(p; k)}. b) Декартово произведение равных множеств находят, образуя всевозможные пары из элементов данного множества: А ´ А = {(3; 3); (3; 5); (5; 3); (5; 5)}. 1) Так как декартовы произведения А´B и В´А состоят из различных элементов, то операция нахождения декартова произведения множеств свойством коммутативности не обладает. 2) Аналогично рассуждая, можно доказать, что для этой операции не выполняется и свойство ассоциативности. 3) Но она дистрибутивна относительно объединения и вычитания множеств, т.е. для любых множеств А, В и С выполняются равенства: (AÈB) ´ С = (A ´ С) È (B ´ С), (A \ B) ´ С = (A ´ С) \ (B ´ С). Пример Проверьте справедливость свойства дистрибутивности декартова произведения относительно объединения, если: А = {3; 4; 5}, В = {5; 7}, С = {7; 8}. Решение. Найдем объединение множеств А и В: AÈB = {3; 4; 5;7}. Далее перечислим элементы множества (AÈB) ´ С, используя определение декартова произведения: (AÈB) ´ С = {(3; 7), (3; 8), (4; 7), (4; 8), (5; 7), (5; 8), (7; 7), (7; 8)}. Чтобы найти элементы множества (A ´ С) È (B ´ С), перечислим сначала элементы множеств А ´ С и В ´ С: А ´ С = {(3; 7), (3; 8), (4; 7), (4; 8), (5; 7), (5; 8)} В ´ С = {(5; 7), (5; 8), (7; 7), (7; 8)}. Найдем объединение полученных декартовых произведений: (A ´ С) È (B ´ С) = {(3; 7), (3; 8), (4; 7), (4; 8), (5; 7), (5; 8), (7; 7), (7; 8)}. Видим, что множества (AÈB) ´ С и (A ´ С) È (B ´ С) состоят из одних и тех же элементов, следовательно, для данных множеств А, В и С справедливо равенство (AÈB) ´ С = (A ´ С) È (B ´ С). Выясним теперь, как можно наглядно представить декартово произведение множеств. · Если множества А и В конечны и содержат небольшое число элементов, то можно изобразить декартово произведение этих множеств при помощи таблицы или графа. Пример Декартово произведение множеств А = {1; 2; 3} и В = {3; 5} можно представить так, как показано на рисунке 1 и 2
Рис. 1 · Декартово произведение двух числовых множеств (конечных и бесконечных) можно изображать на координатной плоскости, так как каждая пара чисел может быть единственным образом изображена точкой на этой плоскости. Способ наглядного представления декартова произведения двух числовых множеств удобно использовать в случае, когда хотя бы одно из них бесконечное. Пример Изобразите на координатной плоскости декартово произведение A ´ В, если: а) А = {1; 2; 3} и В = [3; 5]; б) А = [1; 3], В = [3; 5]; в) А = R, В = [3; 5]; г) А = R, В = R. Решение а) Так как множество А состоит из трех элементов, а множество В содержит все действительные числа о т 3 до 5, включая и сами эти числа, то декартово произведение A ´ В будет состоять из бесконечного множества пар, первая компонента которых либо 1, либо 2, либо 3, а вторая – любое действительное число из промежутка [3; 5]. Такое множество пар действительных чисел на координатной плоскости изобразится тремя отрезками. у
1 2 3 х б) В этом случае бесконечны оба множества А и В. Поэтому первой координатой может быть любое число из промежутка [1; 3], и, следовательно, точки, изображающие элементы декартова произведения данных множеств А и В, образуют квадрат. Чтобы подчеркнуть, что элементы декартова произведения изображаются и точками, лежащими внутри квадрата, этот квадрат можно заштриховать. у 3 1 2 х в) Этот случай отличается от предыдущих тем, что множество А состоит из всех действительных чисел, т.е. абсцисса точек, изображающих элементы множества A ´ В, принимает все действительные значения, в то время как ордината выбирается из промежутка [3; 5]. Множество таких точек образует полосу. y
х г) Декартово произведение R´R состоит из всевозможных действительных чисел. Точки, изображающие эти пары, сплошь заполняют координатную плоскость. Таким образом, декартово произведение R´R содержит столько же элементов, сколько точек находится на координатной плоскости.
Дата добавления: 2014-12-29; Просмотров: 2473; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |