Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства операции нахождения декартова произведения




Декартово произведение множеств

ТЕМА 2.2. ДЕКАРТОВО ПРОИЗВЕДЕНИЕ МНОЖЕСТВ

Содержание

1. Декартово произведение множеств.

2. Свойства операции декартова произведения.

3. Кортеж. Длина кортежа.

Основная литература [7, 10, 11, 16, 23, 33, 34];

Дополнительная литература [17, 18, 27, 50, 81, 84, 82, 86, 87]

Используя две цифры, например, 3 и 5, можно записать четыре двузначных числа: 35, 53, 33 и 55. Несмотря на то, что числа 35 и 53 записаны с помощью одних и тех же цифр, эти числа различные. В том случае, когда важен порядок следования элементов, в математике говорят об упорядоченных наборах элементов. В рассмотренном примере мы имели дело с упорядоченными парами.

Упорядоченную пару, образованную из элементов a и b, принято записывать, используя круглые скобки: (a; b). Элемент a называют первой координатой (компонентой) пары, а элемент b – второй координатой (компонентой) пары.

Пары (а; b) и (с; d) равны в том и только том случае, когда а = с и b = d.

В упорядоченной паре (а; в) может быть, что а = в. Так, запись чисел 33 и 55 можно рассматривать как упорядоченные пары (3; 3) и (5; 5).

Упорядоченные пары можно образовывать как из элементов одного множества, так и двух множеств.

Пример

Даны множества А={1,2,3}, В={3,5}. Образовать упорядоченные пары так, чтобы первая компонента принадлежала множеству А, а вторая – множеству В.

Перечислив все такие пары, получим множество: {(1; 3), (1; 5), (2; 3), (2; 5), (3;3), (3;5)}.

Видим, что имея два множества А и В, мы получили новое множество, элементами которого являются упорядоченные пары чисел. Это множество называют декартовым произведением множеств А и В.

Определение. Декартовым произведением множеств А и В называется множество всех пар, первая компонента которых принадлежит множеству А, а вторая компонента принадлежит множеству В.

Декартово произведение множеств А и В обозначают А´B. Используя это обозначение, определение произведения можно записать так:

A´B={(х; у) | х ÎA и у Î B}.

Пример

Найти декартово произведение множеств А и В, если:

а) А = {m, p}, B={e, f, k}; b) A = B={3, 5}.

Решение. а) Действуем согласно определению – образуем все пары, первая компонента которых выбирается из А, а вторая – из В: А ´ B = {(m; p); (m; f); (m; k); (p; e); (p; f);(p; k)}.

b) Декартово произведение равных множеств находят, образуя всевозможные пары из элементов данного множества: А ´ А = {(3; 3); (3; 5); (5; 3); (5; 5)}.

1) Так как декартовы произведения А´B и В´А состоят из различных элементов, то операция нахождения декартова произведения множеств свойством коммутативности не обладает.

2) Аналогично рассуждая, можно доказать, что для этой операции не выполняется и свойство ассоциативности.

3) Но она дистрибутивна относительно объединения и вычитания множеств, т.е. для любых множеств А, В и С выполняются равенства:

(AÈB) ´ С = (A ´ С) È (B ´ С), (A \ B) ´ С = (A ´ С) \ (B ´ С).

Пример

Проверьте справедливость свойства дистрибутивности декартова произведения относительно объединения, если: А = {3; 4; 5}, В = {5; 7}, С = {7; 8}.

Решение. Найдем объединение множеств А и В: AÈB = {3; 4; 5;7}. Далее перечислим элементы множества (AÈB) ´ С, используя определение декартова произведения: (AÈB) ´ С = {(3; 7), (3; 8), (4; 7), (4; 8), (5; 7), (5; 8), (7; 7), (7; 8)}.

Чтобы найти элементы множества (A ´ С) È (B ´ С), перечислим сначала элементы множеств А ´ С и В ´ С:

А ´ С = {(3; 7), (3; 8), (4; 7), (4; 8), (5; 7), (5; 8)}

В ´ С = {(5; 7), (5; 8), (7; 7), (7; 8)}.

Найдем объединение полученных декартовых произведений:

(A ´ С) È (B ´ С) = {(3; 7), (3; 8), (4; 7), (4; 8), (5; 7), (5; 8), (7; 7), (7; 8)}.

Видим, что множества (AÈB) ´ С и (A ´ С) È (B ´ С) состоят из одних и тех же элементов, следовательно, для данных множеств А, В и С справедливо равенство (AÈB) ´ С = (A ´ С) È (B ´ С).

Выясним теперь, как можно наглядно представить декартово произведение множеств.

· Если множества А и В конечны и содержат небольшое число элементов, то можно изобразить декартово произведение этих множеств при помощи таблицы или графа.

Пример

Декартово произведение множеств А = {1; 2; 3} и В = {3; 5} можно представить так, как показано на рисунке 1 и 2

 

 

   
  (1,3) (1,5)
  (2,3) (2,3)
  (3,3) (3,3)

Рис. 1

· Декартово произведение двух числовых множеств (конечных и бесконечных) можно изображать на координатной плоскости, так как каждая пара чисел может быть единственным образом изображена точкой на этой плоскости.

Способ наглядного представления декартова произведения двух числовых множеств удобно использовать в случае, когда хотя бы одно из них бесконечное.

Пример

Изобразите на координатной плоскости декартово произведение A ´ В, если:

а) А = {1; 2; 3} и В = [3; 5];

б) А = [1; 3], В = [3; 5];

в) А = R, В = [3; 5];

г) А = R, В = R.

Решение

а) Так как множество А состоит из трех элементов, а множество В содержит все действительные числа о т 3 до 5, включая и сами эти числа, то декартово произведение A ´ В будет состоять из бесконечного множества пар, первая компонента которых либо 1, либо 2, либо 3, а вторая – любое действительное число из промежутка [3; 5]. Такое множество пар действительных чисел на координатной плоскости изобразится тремя отрезками.

у

 

1 2 3 х

б) В этом случае бесконечны оба множества А и В. Поэтому первой координатой может быть любое число из промежутка [1; 3], и, следовательно, точки, изображающие элементы декартова произведения данных множеств А и В, образуют квадрат. Чтобы подчеркнуть, что элементы декартова произведения изображаются и точками, лежащими внутри квадрата, этот квадрат можно заштриховать.

у

3

1 2 х

в) Этот случай отличается от предыдущих тем, что множество А состоит из всех действительных чисел, т.е. абсцисса точек, изображающих элементы множества A ´ В, принимает все действительные значения, в то время как ордината выбирается из промежутка [3; 5]. Множество таких точек образует полосу.

y

 

х

г) Декартово произведение R´R состоит из всевозможных действительных чисел. Точки, изображающие эти пары, сплошь заполняют координатную плоскость. Таким образом, декартово произведение R´R содержит столько же элементов, сколько точек находится на координатной плоскости.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 2473; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.