Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вычитание множеств. Дополнение подмножества




Можно находить пересечение и объединение трех множеств, зная, как это делается для двух;

2) на основании этого свойства в выражениях (А Ç B) Ç С, A Ç (ВÇ С),(A È B) È С, A È (B È С) можно опускать скобки и писать А Ç B Ç С или A È B È С, что облегчает запись.

Рассмотрим строгое доказательство свойства ассоциативности одной из операций над множествами, например объединения, т.е. докажем, что для любых множеств А, В и С справедливо равенство (A È B) È С = A È (B È С).

Доказательство. Чтобы доказать равенство двух множеств, надо убедится в том, что каждый элемент множества (A È B) È С содержится в множестве A È (B È С), и наоборот.

1. Пусть х – любой элемент множества (A È B) È С. Тогда, по определению объединения, х Î A È B или хÎС.

Если х Î A È B, то, по определению объединения, х Î А или х Î В. В том случае, когда х ÎА, то, также по определению объединения, х Î A È (B È С).

Если х Î В, то имеем, что х Î B È С, а значит, х Î A È (B È С). Случай, когда х Î А и х Î В, сводится к рассмотренным. Таким образом, из того, что х Î A È B, следует, что х Î A È (B È С).

Если х Î С, то, по определению объединения, х Î В È С, и следовательно, х Î A È (B È С).

Случай, когда х Î A È B и х Î С, сводится к рассмотренным выше.

Итак, мы показали, что каждый элемент множества (A È B) È С содержится и в множестве A È (B È С), т.е. (A È B) È С Ì A È (B È С).

2. Пусть у - любой элемент множества A È (B È С). Тогда, по определению объединения, уÎА или уÎ B È С.

Если у Î А, то, по определению объединения, у ÎA È (B È С).

Если у Î B È С, то у Î B или уÎ С. В том случае, когда у Î B, то уÎ AÈB и, значит, уÎ (A È B) È С. Когда же у Î С, то у Î (A È B) È С. Случай, когда у Î В и у Î С, сводится к уже рассмотренным.

Итак, мы показали, что каждый элемент множества A È (B È С) содержится и в множестве (A È B) È С, т.е. A È (B È С) Ì (A È B) È С.

Согласно определению равных множеств заключаем, что (A È B) È С = A È (B È С), что и требовалось доказать.

Аналогично доказывается и ассоциативное свойство пересечения множеств.

Замечание. Взаимосвязь пересечения и объединения множеств отражается в распределительных, или дистрибутивных, свойствах этих операций. Таких свойств два:

1. Пересечение дистрибутивно относительно объединения множеств, т.е. для любых множеств А, В и С выполняется равенство (А È B) Ç С = (А Ç С) È (ВÇ С).

2. Объединение дистрибутивно относительно пересечения множеств, т.е. для любых множеств А, В и С выполняется равенство (А Ç B) È С = (А È С) Ç (В È С).

Замечание. Если в выражении есть знаки пересечения и объединения множеств и нет скобок, то сначала выполняют пересечение, так как считают, что пересечение более «сильная» операция, чем объединение.

Чтобы объяснить учащимся, что 5-3=2, часто используют такой прием. Берут 5 предметов, например, 5 кружков. После того как учащиеся убедятся при помощи счета, что кружков действительно 5, им предлагают 3 кружка убрать и сосчитать, сколько кружков осталось. Осталось 2, значит, 5-3=2.

В чем суть приема? Из данного множества, в котором а элементов, удаляют подмножество, содержащее b элементов. Тогда в оставшейся части множества а – b элементов.

Если заданы два множества, то можно не только найти их пересечение и объединение, но и вычесть из одного множества другое. Результат вычитания называют разностью и определяют следующим образом.

Определение. Разностью множеств А и В называется множество, содержащее все элементы, которые принадлежат множеству А и не принадлежат множеству В.

Разность множеств А и В обозначают А \ В. Тогда, по определению, имеем:

А \ В ={ х | х Î A и х Ï B }.

Если представить множества А и В при помощи кругов Эйлера, то разность А \ В изобразиться заштрихованной областью.

В школьном курсе математики чаще всего приходится выполнять вычитание множеств в случае, когда одно из них является подмножеством другого, при этом разность множеств А \ В называют дополнением множества В до множества А, и обозначают символом ВА.

При помощи кругов Эйлера данная ситуация представляется на рисунке, где заштрихована та часть, которая осталась после удаления из множества А подмножества В. Эту часть называют дополнением множества В до множества А.

Определение. Пусть В Ì А. Дополнением множества В до множества А называется множество, содержащее только те элементы множества А, которые не принадлежат множеству В.

ВА ={ х| х Î A и х Ï B }.

Дополнение множества В до множества А (при условии, что В Ì А) обозначают ВА = А \ В.

Операция при помощи которой находят дополнение подмножества, называется вычитанием.

Нахождение подмножества в конкретных случаях:

· Если элементы множества А и В пересечены, то, чтобы найти А \ В, достаточно перечислить элементы, принадлежащие А и не принадлежащие В.

Пример. А = {1, 2, 3, 5}, а B={1, 5}, то А \ В = {2,3}.

· Если указаны характеристические свойства элементов множеств А и В (ВÌА), характеристическое свойство множества А \ В имеет вид «х ÎA и х ÏB».

Пример. А – множество четных чисел, В – множество чисел, кратных 4. Найти дополнение множества В до множества А. Определить, содержатся ли в этом дополнении числа 20 и 26.

Так как, все числа кратные 4, четные, то В Ì А. Если из множества А удалить все числа, кратные 4, то в нем останутся четные числа, не кратные 4. Значит, А \ В – множество четных чисел, не кратных 4. Характеристическое свойство элементов этого множества – «быть четным числом и не кратным 4».

Нетрудно видеть, что 20 Ï А \ В, поскольку 20 – четное число и кратно 4, а что 26 Î А \ В, т.к. 26 – четное число и не кратно 4.

Пример. Выясним теперь, из каких чисел состоит множество А \ В Ç С, если А – множество четных чисел, В – множество чисел, кратных 4, С – множество чисел, кратных 6.

В записи А \ В Ç С нет скобок. Возникает вопрос: какое действие выполнять первым? Условились считать, что операция пересечения множеств является более «сильной», чем вычитание.

Пересечением множеств В и С состоит из чисел, кратных 4 и 6. Если удалить это пересечение из множества А, то в нем останутся четные числа, не кратные 4 и 6 (одновременно). При помощи кругов Эйлера данные множества А, В, и С можно изобразить так:

Замечание. Вычитание – это третья операция над множествами. Условимся считать, что пересечение – более «сильная» операция, чем вычитание. Поэтому порядок выполнения действий будет такой: сначала находят пересечение множеств, а затем вычитание.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 2701; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.