Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основы режиссуры




I. Запись и обработка звука

Попробуем разобраться, как звуковые колебания можно представить в цифровом виде.

Как видно из амплитудно-временного графика звукового сигнала (волновой фор-мы), в любой момент звучания амплитуда сигнала имеет конкретное значение, которое может быть измерено и выражено некоторым числом. Таким образом, если мы точно измерим амплитуду сигнала в каждый момент времени и выразим ее в числовом виде, полученный ряд чисел будет точной записью исходного звукового сигнала. Эта последовательность чисел может быть преоб-разована в двоичную форму и записана на любой носитель, в том числе в память компьютера.

Однако здесь мы сталкиваемся с большой проблемой, поскольку звуковой сигнал, вообще говоря, непрервен, то есть количество точек на его графике бесконечно. Следовательно, для получения действительно точной цифровой записи звукового сигнала измерять его амплитуду нужно через бесконечно малые промежутки вре-мени (и, следовательно, бесконечное количество раз, а полученный числовой мас-сив будет бесконечно велик). Более того, на “линейке” шкалы измерения ампли-туды должно быть бесконечное количество градаций, то есть весь динамический диапазон должен выражаться числами от - ¥ до + ¥ (или “хотя бы” от 0 до + ¥). Естественно, в действительности мы можем провести измерения лишь конечное число раз, используя конечное количество амплитудных градаций (этот параметр называют амплитудным разрешением). Возникает вопрос: через какие промежут-ки времени и с каким амплитудным разрешением следует проводить измерения, чтобы звук на выходе не сильно отличался от исходного сигнала (рис. 7.5)?


Рис.7.5.Дискретизация сигнала 440 Гц с частотой 5000 Гц

 

Согласно известной теореме Котельникова (иногда её называют теоремой Найквиста), для отображения сигнала некоторой частоты f необходима дискретизация (сканирование и измерение амплитуд сигнала) с частотой не менее 2f. Поскольку человеческий слух может воспринимать звуковые колебания с частотой до 18 кГц, по-лучается, что частота дискретизации любого звукового сигнала должна быть не менее 36 кГц. На практике обычно используются частоты дискретизации от 11 025 до 48 000 Гц (например, на звуковых компакт-дисках она составляет 44 100 Гц), а в последнее время стала использоваться частота 96 кГц (она определена как стан-дартная для DVD-дисков).

Что касается амплитудного разрешения, то можно заметить, что точность воспро-изведения повышается с увеличением количества градаций амплитудной шкалы. В звуковых компакт-дисках используется 65 536 амплитудных града-ций. Как известно, для представления чисел в диапазоне от 0 до 65 535 необходи-мо 16 бит информации, поэтому часто бывает удобнее говорить о 16-битном раз-решении (а в просторечии - о 16-битном звуке). Ранее часто использовались 8-битное разрешение (256 градаций) и 12-битное (4096 градаций), звучащие с боль-шими искажениями. На современном этапе звук обрабатывается, как правило, при 24-битном или 32-битном разрешении (16 777 216 или 4 294 967 296 амплитуд-ных градаций).

Для того чтобы преобразовать звук в цифровую форму, используются специаль-ные устройства - аналого-цифровые преобразователи (АЦП). От качества АЦП зависит качество полученного цифрового сигнала, и если преобразование произ-ведено плохо, то впоследствии придется затратить массу сил и времени на то, чтобы исправить положение. Поэтому рекомендую пользоваться только качественными АЦП.

Несмотря на все преимущества цифрового сигнала, его нельзя услышать напря-мую. Для того чтобы его услышать, перед подачей на усилитель и колонки сигнал необходимо преобразовать в аналоговый, для чего используются цифро-аналого-вые преобразователи (ЦАП). ЦАП должен быть также высокого качества, посколь-ку все достоинства цифрового сигнала и его гибкой компьютерной обработки мо-гут превратиться в ничто, если звук будет воспроизведен через некачественный ЦАП. АЦП и ЦАП установлены на любой звуковой карте.

Теперь поговорим немного отом таким же образом происходит запись звука в компьютер. Компьютер представляет собой сложный цифровой аппарат. Вся информация в нем содержится в цифровом виде. Таким образом, и все процессы происходящие в компьютере - это обработка цифровых сигналов. По этой причине звуковую информацию, с которой мы бы хотели работать в дальнейшем, необходимо оцифровать. Итак, что же такое оцифровка и какие устройства и какие устройства обеспечивают этот процесс.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 407; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.