Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

I. Механика и элементы специальной теории относительности




 

1. Кинематика поступательного и вращательного движения материальной точки

Механика занимается изучением механического движения тел. Механическим движением тел называют изменение их положения (или положения их частей) в пространстве с течением времени. В основе классической механики лежат законы Ньютона.

Кинематика изучает механическое движение с геометрической точки зрения и не рассматривает причины, вызывающие это движение. В механике рассматривается движение таких объектов, как материальная точка и абсолютно твердое тело.

Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь.

Абсолютно твёрдым телом называется тело, деформацией которого в данных условиях можно пренебречь. Абсолютно твёрдое тело можно рассматривать как систему материальных точек, жестко связанных между собой.

 

1.1. Кинематические характеристики движения материальной точки.

 

Описать движение материальной точки – значит знать ее положение относительно выбранной системы отсчета в любой момент времени. Системойотсчёта называется система координат, связанная с телом отсчёта и снабжённая синхронизированными часами. Наиболее часто используется прямоугольная декартова система координат (рис. 1).

 

Рис. 1

Положение материальной точки характеризуется радиусом-вектором , проведённым из начала координат в данную точку (рис. 1). Проекции радиуса-вектора на координатные оси соответствуют координатам точки в выбранной системе координат (рис. 1):   .   Движение материальной точки задано, если известна зависимость координат точки от времени, т.е.

или .

Данные уравнения являются кинематическими уравнениями движения материальной точки, или законом движения точки. В процессе движения конец радиуса-вектора, связанный с точкой, описывает в пространстве кривую, называемую траекторией движения материальной точки. В зависимости от формы траектории различают прямолинейное и криволинейное движения.

Перемещением материальной точки назы­ва­ют вектор, проведённый из начальной точки в конечную точку траектории (рис. 1).

.

Вектор может быть выражен через пере­ме­ще­ния вдоль координатных осей:

.

Модуль вектора перемещения можно определить следующим образом: .

Путь материальной точки S12 - это длина траектории.

Скорость - векторная физическая величина, характеризующая быстроту изменения положения тела в пространстве, равная перемещению тела за единицу времени.

Различают среднюю и мгновенную скорости.

- средняя скорость;

 

- мгновенная скорость;

 

- среднее значение модуля скорости.

Вектор средней скорости направлен так же, как и вектор перемещения . Вектор мгновенной скорости направлен по касательной к траектории движения так же, как вектор элементарного перемещения: . Так как , где dS - элементарный путь, то модуль мгновенной скорости равен производной пути по времени:

.

В декартовой системе координат скорость можно представить через её проекции на оси:


Модуль скорости может быть найден по следующей формуле:

.

 

При рассмотрении движения тела относительно двух различных инерциальных систем отсчета используют классический закон сложения скоростей: скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно движущейся системы и скорости самой движущейся системы относительно неподвижной :

.

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости с течением времени, равная приращению скорости за единицу времени. Различают среднее и мгновенное ускорения.

- среднее ускорение,

 

- мгновенное ускорение.

Вектор ускорения может быть представлен через его проекции на координатные оси:

,

где , , .

 

Модуль ускорения можно определить следующим образом:

.

 

 

1.2. Основная задача кинематики.

 

Основная задача кинематики заключается в нахождении закона движения материальной точки. Для этого используются следующие соотношения:

; ; ; ;

.

Частные случаи прямолинейного движения:

1) равномерное прямолинейное движение: ;

2) равнопеременное прямолинейное движение: .

 

1.3. Тангенциальная и нормальная составляющие ускорения.

 

Часто используется представление ускорения через две составляющие: тангенциальное и нормальное ускорения (рис. 2):

  Рис. 2     ;   .  

Тангенциальное ускорение характеризует изменение скорости по модулю (величине) и направлено по касательной к траектории:

,

где - производная модуля скорости, - единичный вектор касательной.

Нормальное ускорение характеризует изменение скорости по направлению и направлено по радиусу кривизны к центру кривизны траектории в данной точке:

,

где R - радиус кривизны траектории, - единичный вектор нормали.

В случае, если известны модули составляющих векторов, модуль вектора ускорения может быть найден по формуле:

.

1.4. Вращательное движение и его кинематические характеристики.

При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Для характеристики вращательного движения вводятся следующие кинематические характеристики (рис. 3).

Угловое перемещение - вектор, численно равный углу поворота тела за время и направленный вдоль оси вращения так, что глядя вдоль него поворот тела наблюдается происходящим по часовой стрелке.

Угловая скорость - характеризует быстроту и направление вращения тела, равна производной угла поворота по времени и направлена вдоль оси вращения как угловое перемещение.

При вращательном движении справедливы следующие формулы:

 

; ; .

Угловое ускорение характеризует быстроту изменения угловой скорости с течением времени, равно

первой производной угловой скорости и направлено вдоль

оси вращения:

; ; .

Зависимость выражает закон вращения тела.

При равномерном вращении: e = 0, w = const, j = wt.

При равнопеременном вращении: e = const, , .

Для характеристики равномерного вращательного движения используются период вращения и частоту вращения.

Период вращения Т – время одного оборота тела, вращающегося с постоянной угловой скорости.

Частота вращения n - количество оборотов, совершаемых телом за единицу времени.

.

Связь между угловыми и линейными кинематическими характеристиками (рис. 4):

       
   
 
 

 

 

2. Динамика поступательного и вращательного движения.

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 903; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.