КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Простейший метод Монте-Карло
Методы Монте-Карло Методом Монте-Карло называется совокупность приемов, позволяющих получать решения математических или физических задач при помощи случайных многократных испытаний. На практике случайные испытания заменяются результатами вычислений, производимых над случайными числами. Название «метод Монте-Карло» для методов, систематически использующих случайные величины, появилось в 1949 г. Создателями этого метода считают американских математиков Дж. Неймана и С. Улама. Само название «Монте-Карло» происходит от названия города Монте-Карло княжества Монако, знаменитого своим игорным домом. Дело в том, что одним из простейших механических приборов для получения случайных величин является рулетка. Методом Монте-Карло можно решать следующие задачи: 1) моделировать любой процесс, на протекание которого влияют случайные факторы; 2) для многих математических задач, не связанных с какими-либо случайностями, можно искусственно придумать вероятностную модель, позволяющую решать эти задачи. Эффективное применение метода Монте-Карло стало возможным после появления ЭВМ, так как для получения достаточно точной оценки искомой величины требуется произвести вычисления для большого объема числовых данных. Это объясняется тем, что метод Монте-Карло использует различные предельные соотношения теории вероятностей – законы больших чисел и предельные теоремы. Рассмотрим два простейших метода Монте-Карло вычисления кратных интегралов, которые достаточно легко реализуются на ЭВМ. Рассмотрим вначале вычисление однократного интеграла. Пусть требуется вычислить интеграл вида: , (4.47) где функция задана на отрезке . Выберем произвольную плотность распределения случайной величины . Плотность определена на , причем и . Введем случайную величину , связанную со случайной величиной формулой . Математическое ожидание случайной величины равно . Таким образом, можно вычислить значение интеграла (4.47), вычислив математическое ожидание случайной величины . Для вычисления используются методы математической статистики. Пусть реализаций случайной величины . Тогда при достаточно большом значении получи4м . (4.48) При реализации метода Монте-Карло обычно в качестве используют равномерное распределение (4.49) Для того, чтобы получить реализации равномерно распределенной на случайной величины , достаточно иметь реализации случайной величины , равномерно распределенной на . Тогда и, учитывая (4.49), получим (4.50) Аналогичный результат получится, если интеграл (4.47) путем замены переменной перевести в интервал . Тогда , где реализации случайной величины, равномерно распределенной на . Рассмотрим вычисление многократного интеграла. Пусть требуется вычислить интеграл , (4.51) где область определяется неравенствами (4.52) При вычислении интеграла (4.51), область (4.52) с помощью линейной замены переменных , заключается в -мерный единичный куб. Тогда интеграл (4.51) запишется в виде , (4.53) где − якобиан преобразования, , область определяется неравенствами (4.54) Здесь , , Интеграл (4.51) можно записать в виде , (4.55) где . (4.56) Метод Монте-Карло вычисления интеграла (4.56) заключается в следующем. Задается совокупность точек координаты которых являются независимыми случайными величинами, равномерно распределенными на интервале , и полагается
Тогда . Как правило, необходимо вычислить значение интеграла с заданной точностью , при этом понятно, что значения и взаимосвязаны: точность вычисления достигается при определенном значении . Рассмотрим подход к определению значения , который обеспечивает требуемую точность вычисления . Пусть требуется вычислить интегралы: (4.57) или , (4.58) где область заключена в -мерный единичный куб. На основанииправила «трех сигм» можно записать, что , (4.49) где точки, используемые для вычисления интеграла (4.57), координаты которых равномерно распределены на интервале , или точки, используемые для вычисления интеграла (4.58), координатами которых являются независимые равномерно распределенные на величины; , − значение интеграла и дисперсия, приближенно вычисляемые следующим образом , (4.60)
. (4.61) Формула (4.59) означает, что с вероятностью, близкой к единице, абсолютная погрешность вычисления интегралов (4.57) и (4.58) не превосходит величины . Отсюда следует, что необходимо задавать число таким образом, чтобы для требуемой точности было справедливо неравенство . (4.62) Для определения значения можно использовать итерационный алгоритм. Например, можно сначала задать число точек, равное , а затем увеличивать его по формуле пока не выполнится неравенство (4.62), где некоторое заданное целое число. При этом значения функций в суммах (4.60), (4.61) необходимо добавлять, не пересчитывая все заново. Для уменьшения объема вычисления можно воспользоваться следующими рекуррентными формулами:
, .
Дата добавления: 2014-12-29; Просмотров: 1587; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |