КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Порядок расчетов аналогичен предложенному выше
ЭКСЦЕСС - Возвращает эксцесс множества данных. Эксцесс характеризует относительную остроконечность или сглаженность распределения по сравнению с нормальным распределением. Положительный эксцесс обозначает относительно остроконечное распределение. Отрицательный эксцесс обозначает относительно сглаженное распределение. СКОС - Возвращает асимметрию распределения. Асимметрия характеризует степень несимметричности распределения относительно его среднего. Положительная асимметрия указывает на отклонение распределения в сторону положительных значений. Отрицательная асимметрия указывает на отклонение распределения в сторону отрицательных значений. СТАНДОТКЛОНПА - вычисляет стандартное отклонение по генеральной совокупности, заданной аргументами, которые могут включать текст и логические значения. Стандартное отклонение - это мера того, насколько широко разбросаны точки данных относительно их среднего. СТАНДОТКЛОНА - оценивает стандартное отклонение по выборке. Стандартное отклонение - это мера того, насколько широко разбросаны точки данных относительно их среднего. В расчете также учитываются текстовые и логические значения, такие как ИСТИНА или ЛОЖЬ. СТАНДОТКЛОН - оценивает стандартное отклонение по выборке. Стандартное отклонение - это мера того, насколько широко разбросаны точки данных относительно их среднего. В MS Excel среднее квадратическое отклонение реализовано с помощью функций СТАНДОТКЛОН, СТАНДОТКЛОНА, СТАНДОТКЛОНП, СТАНДОТКЛОНПА. Определить среднее квадратическое отклонение.
СТАНДОТКЛОН(число1; число2;...) Число1, число2,... - это от 1 до 30 числовых аргументов, соответствующих выборке из генеральной совокупности. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.
· Логические значения, такие как ИСТИНА или ЛОЖЬ, а также текст игнорируются. Если текст и логические значения игнорироваться не должны, следует использовать функцию рабочего листа СТАНДОТКЛОНА. · СТАНДОТКЛОН предполагает, что аргументы являются только выборкой из генеральной совокупности. Если данные представляют всю генеральную совокупность, то стандартное отклонение следует вычислять с помощью функции СТАНДОТКЛОНП. · Стандартное отклонение вычисляется с использованием "несмещенного" или "n - 1" метода. · СТАНДОТКЛОН использует следующую формулу: СТАНДОТКЛОН =
СТАНДОТКЛОНА(значение1,значение2,...) Значение1, значение2,... - это от 1 до 30 значений, соответствующих выборке из генеральной совокупности. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.
· СТАНДОТКЛОНА предполагает, что аргументы являются только выборкой из генеральной совокупности. Если данные представляют всю генеральную совокупность, то стандартное отклонение следует вычислять с помощью функции СТАНДОТКЛОНПА. · Аргументы, содержащие значение ИСТИНА, интерпретируются как 1. Аргументы, содержащие значение ЛОЖЬ, интерпретируются как 0 (ноль). Если текст и логические значения должны игнорироваться, следует использовать функцию рабочего листа СТАНДОТКЛОН. · Стандартное отклонение вычисляется с использованием "не Байесовского" или "n - 1" метода. · СТАНДОТКЛОНА использует следующую формулу: СТАНДОТКЛОНА =
СТАНДОТКЛОНП - Вычисляет стандартное отклонение по генеральной совокупности. Стандартное отклонение - это мера того, насколько широко разбросаны точки данных относительно их среднего.
СТАНДОТКЛОНП(число1; число2;...) Число1, число2,... - это от 1 до 30 числовых аргументов, соответствующих генеральной совокупности. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.
· Логические значения, такие как ИСТИНА или ЛОЖЬ, а также текст игнорируются. Если текст и логические значения игнорироваться не должны, следует использовать функцию рабочего листа СТАНДОТКЛОНА. · СТАНДОТКЛОНП предполагает, что аргументы образуют всю генеральную совокупность. Если данные являются только выборкой из генеральной совокупности, то стандартное отклонение следует вычислять с использованием функции СТАНДОТКЛОН. · Для больших выборок СТАНДОТКЛОН и СТАНДОТКЛОНП возвращают примерно равные значения. · Стандартное отклонение вычисляется с использованием "смещенного" или "n" метода. · СТАНДОТКЛОНП использует следующую формулу:
СТАНДОТКЛОНП =
СТАНДОТКЛОНПА(значение1,значение2,...) Значение1,значение2,... это от 1 до 30 значений, соответствующих генеральной совокупности. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.
· СТАНДОТКЛОНПА предполагает, что аргументы образуют всю генеральную совокупность. Если данные являются только выборкой из генеральной совокупности, то стандартное отклонение следует вычислять с использованием функции СТАНДОТКЛОНА. · Аргументы, содержащие значение ИСТИНА, интерпретируются как 1, аргументы, содержащие значение ЛОЖЬ, интерпретируются как 0 (ноль). Если текст и логические значения должны игнорироваться, следует использовать функцию рабочего листа СТАНДОТКЛОНП. · Для больших выборок СТАНДОТКЛОНА и СТАНДОТКЛОНПА возвращают примерно равные значения. · Стандартное отклонение вычисляется с использование "Байесовского" или "n" метода. · СТАНДОТКЛОНПА использует следующую формулу: СТАНДОТКЛОНПА = В зависимости от специфики исходной информации выберите соответствующую функцию для расчета среднего квадратического отклонения и осуществите его в порядке, аналогичном пункту 2.
5. Определить эксцесс и коэффициент асимметрии.
В MS Excel расчет эксцесса и коэффициента асимметрии реализован с помощью функций ЭКСЦЕСС И СКОС.
СКОС(число1;число2;...) Число1, число2,... - это от 1 до 30 аргументов, для которых вычисляется асимметричность. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.
· Аргументы должны быть числами или именами, массивами или ссылками, содержащими числа. · Если аргумент, который является массивом или ссылкой, содержит тексты, логические значения или пустые ячейки, то такие значения игнорируются; однако, ячейки, которые содержат нулевые значения учитываются. · Если имеется менее трех точек данных, или стандартное отклонение равно нулю, то функция СКОС возвращает значение ошибки #ДЕЛ/0!. · Уравнение для асимметрии определяется следующим образом: СКОС = , где - стандартное отклонение выборки.
ЭКСЦЕСС(число1;число2;...) Число1, число2,... - это от 1 до 30 аргументов, для которых вычисляется эксцесс. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.
· Аргументы должны быть числами или именами, массивами или ссылками, содержащими числа. · Если аргумент, который является массивом или ссылкой, содержит тексты, логические значения или пустые ячейки, то такие значения игнорируются; однако, ячейки, которые содержат нулевые значения учитываются. · Если задано менее четырех точек данных или если стандартное отклонение выборки равняется нулю, то функция ЭКСЦЕСС возвращает значение ошибки #ДЕЛ/0!. · Эксцесс определяется следующим образом: ЭКСЦЕСС = где - стандартное отклонение выборки.
Дата добавления: 2014-12-23; Просмотров: 570; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |