Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методические указания. Тема: Средние показатели





Доверь свою работу кандидату наук!
1500+ квалифицированных специалистов готовы вам помочь

Тема: Средние показатели

 

Средняя величина представляет собой обобщенную количественную характеристику признака статистической совокупности в конкретных условиях места и времени.

Показатель в форме средней величины отражает типичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков.

Сущность средней заключается в том, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием основных факторов.

Средняя величина только тогда будет отражать типичный уровень признака, когда она рассчитана по качественно однородной совокупности.

На практике определить среднюю во многих случаях можно через исходное соотношение средней (ИСС) или ее логическую формулу:

В зависимости от того, в каком виде представлены исходные данные для расчета средней, зависит, каким именно образом будет реализовано ее исходное соотношение.

Различают следующие виды средней, каждая из которых может быть простой и взвешенной:

· Средняя арифметическая;

· Средняя гармоническая;

· Средняя геометрическая;

· Средняя квадратическая, кубическая и т.д.

· Структурные средние: мода и медиана.

Средняя арифметическая простая (не взвешенная). Эта форма средней используется в тех случаях, когда расчет осуществляется по не сгруппированным данным.

Средняя арифметическая взвешенная. При расчете средних величин отдельные значения признака могут повторяться, встречаться по нескольку раз. В данном случае расчет проводится по сгруппированным данным или вариационным рядам, которые могут быть дискретными или интервальными.

Средняя арифметическая величина имеет следующие свойства, использование которых упрощает ее расчет.

1. Произведение средней на сумму частот равно сумме произведений отдельных вариантов на соответствующие им частоты.

2. Сумма отклонений индивидуального значения признака от средней арифметической равна нулю:



3. Если все осредняемые варианты уменьшить или увеличить на постоянное число А, то средняя арифметическая соответственно уменьшится или увеличится на туже величину.

4. Если все варианты значений признака уменьшить или увеличить в А раз, то средняя соответственно уменьшится или увеличится в А раз:

5. Если все частоты уменьшить или увеличить в А раз, то средняя останется неизменной:

6. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем сумма квадратов их отклонений от любой другой произвольной величины С:

Средняя гармоническая – это величина, обратная средней арифметической из обратных значений признака. Различают среднюю гармоническую простую и взвешенную.

Средняя гармоническая простая.

Средняя гармоническая взвешенная применяется тогда, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение.

Средняя арифметическая и средняя гармоническая величины могут применятся в одних и тех же ситуациях, но по разным данным. Если в ИСС неизвестен числитель, то в расчетах применяется средняя арифметическая величина. Если в ИСС неизвестен знаменатель, то в расчетах используется средняя гармоническая величина.

Средняя квадратическая величина применяется тогда, когда вместо индивидуальных значений признака представлены квадраты исходных величин.

Средняя геометрическаяприменяется в случаях определения средней по значениям, имеющим большой разброс, либо в случаях определения средней величины по относительным показателям.

Характеристиками структуры совокупности являются следующие структурные средние:

1. Мода (Mo) – величина признака, наиболее часто встречающаяся в совокупности, т.е. имеющая наибольшую численность в ряду распределения.

а) В дискретном ряду распределения мода определяется визуально.

б) В интервальном ряду распределения визуально можно определить только интервал, в котором заключена мода, который называется модальным интервалом. Мода будет равна:

где хМо – нижняя граница модального интервала;

iМо величина модального интервала;

fМо частота модального интервала;

fМо-1 – частота, предшествующая модальному интервалу;

fМо+1 – частота интервала, следующего за модальным.

2. Медиана (Me) – значение признака, приходящееся на середину ранжированного ряда, т.е. делящее ряд распределения на две равные части.

а) В дискретном ряду распределения определяется номер медианы по формуле:

Номер медианы показывает то значение показателя, которое и является медианой.

б) В интервальном ряду распределения медиана рассчитывается по следующей формуле:

где хМе – нижняя граница медианного интервала;

iМе величина медианного интервала;

fМе частота медианного интервала;

SМе-1 – сумма накопленных частот, предшествующих медианному интервалу;

åfi/2 – полусумма частот ряда.

 

Мода и медиана могут быть определены графически.

 

Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой




Дата добавления: 2014-12-23; Просмотров: 342; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:

  1. I. Методические рекомендации (материалы) для преподавателя
  2. II. Методические основы определения рыночной стоимости интеллектуальной собственности.
  3. II. УЧЕБНЫЕ И МЕТОДИЧЕСКИЕ ПОСОБИЯ, ПРАКТИКУМЫ
  4. II. УЧЕБНЫЕ И МЕТОДИЧЕСКИЕ ПОСОБИЯ, ПРАКТИКУМЫ
  5. II. УЧЕБНЫЕ И МЕТОДИЧЕСКИЕ ПОСОБИЯ, ПРАКТИКУМЫ
  6. IV.УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
  7. V. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО НАПИСАНИЮ ДИПЛОМНЫХ РАБОТ
  8. Атласы, учебно-методические пособия, практикумы
  9. Бесценные методические указания.
  10. В курсе для закрепления знаний по теме предусмотрено семинарское занятие по проблемам античной философии (см. методические рекомендации по семинарским занятиям)
  11. В курсе для закрепления знаний по теме предусмотрено семинарское занятие по проблемам природы человека (см. методические рекомендации по семинарским занятиям).
  12. В курсе для закрепления знаний по теме предусмотрено семинарское занятие по проблемам стратегии будущего в философии (см. методические рекомендации по семинарским занятиям).

studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.