Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Средняя величина в статистике. Виды средних величин?




Средняя величина является обобщающей характеристикой совокупности однотипных явлений по изучаемому признаку. Средняя величина должна вычисляться с учетом экономического содержания определяемого показателя.

Все виды средних делятся на:

· степенные (аналитические, порядковые) средние (арифметическая, гармоническая, геометрическая, квадратическая);

· структурные (позиционные) средние (мода и медиана) – применяются для изучения структуры рядов распределения.

Средние степенные величины:

Средняя степенная (при различной величине k) определяется:

Таблица. Виды средних степенных величин:

k Наименование средней Формула средней Когда используется
  Средняя арифметическая простая (невзвешенная) где xi – i-й вариант осредняемого признака (); n – число вариант Используется, когда расчет осуществляется по несгруппированным данным
  Средняя арифметическая взвешенная где fi – частота повторяемости i-го варианта Используется, когда данные представлены в виде рядов распределения или группировок
-1 Средняя гармоническая взвешенная , где . Используется, когда известны индивидуальные значения признака и веса W за ряд временных интервалов
-1 Средняя гармоническая невзвешенная Используется в случае, когда веса равны
  Средняя геометрическая невзвешенная (1.6) Используется в анализе динамики для определения среднего темпа роста
  Средняя геометрическая взвешенная
  Средняя квадратическая невзвешенная Используется при расчете показателей вариации
  Средняя квадратическая взвешенная

В статистическом анализе также применяются степенные средние 3-го и более высоких порядков.

Правило мажорантности средних: с ростом показателя степени значения средних возрастают.

Средняя прогрессивная – средняя для “лучших” значений признака.

Свойства средней арифметической:

1. Средняя арифметическая постоянной величины равна самой величине.

2. Если все варианты xi увеличить (уменьшить) на одно и тоже число c, увеличится (уменьшится) на то же число.

.

3. Если все варианты xi увеличить (уменьшить) в одно и то же число раз k, увеличится (уменьшится) в то же число раз.

.

4. Средняя арифметическая отклонений вариантов от средней арифметической равна 0.

.

По свойству 2 при : .

5. Средняя арифметическая алгебраической суммы признаков равна такой же сумме средней арифметической этих признаков.

.

6. Если ряд состоит из нескольких групп, общая средняя равна средней арифметической групповых средних, причем весами являются объемы группы.

,

где – средняя арифметическая группы i;

N – общий объем ряда ();

ni – объем группы i ().

.

Средние структурные величины:

В условиях недостаточности средних используют структурные средние величины – моду и медиану.

Медиана (Ме) – это вариант, который находится а середине вариационного ряда. Медиана делит ряд на две равные (по числу наблюдений) части. В ранжированных рядах не сгруппированных данных нахождение медианы сводится к отысканию порядкового номера и значения варианта у этого номера.

Медиана в интервальных вариационных рядах рассчитывается по формуле:

,

где х 0 – нижняя граница медианного интервала (накопленная частота которого превышает половину общей суммы частот);

– величина медианного интервала;

– накопленная частота интервала, предшествующего медианному;

– частота медианного интервала.

Также в интервальных вариационных рядах медиана может быть найдена с помощью кумуляты как значение признака, для которого

или .

Главное свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины: .

Модой (Мо) вариационного ряда называется вариант, которому соответствует наибольшая частота.

Для вычисления моды в интервальном ряду сначала находится модальный интервал, имеющий наибольшую частоту (или наибольшую плотность распределения – отношение частоты интервала к его величине ni / hi – в интервальном ряду с неравными интервалами), а значение моды определяется линейной интерполяцией:

,

где хо нижняя граница модального интервала;

– величина модального интервала;

, , – частота ni (в интервальном ряду с равными интервалами) или плотность распределения ni / hi (в интервальном ряду с неравными интервалами) модального, до и послемодального интервала.

Мода так же, как и медиана обладает определенной устойчивостью к вариации признака. Если в совокупности первичных признаков нет повторяющихся значений, то для определения моды проводят группировку.

Графически отобразить моду по гистограмме можно следующим образом: нужно взять столбец, имеющий наибольшую высоту, и из его левого верхнего угла провести отрезок в угол последующего столбца, а из правого угла – в верхний правый угол предыдущего столбца, абсцисса точки пересечения отрезков и будет соответствовать модальному значению признака в изучаемой совокупности. Медиану приближенно можно определить графически - по кумуляте. Для этого высоту наибольшей ординаты, которая соответствует общей численности совокупности, делят пополам. Через полученную точку проводят прямую, параллельную оси абсцисс, до пересечения ее с кумулятой. Абсцисса точки пересечения и есть медиана (рисуноке)


Рис:Графическое отображение интервального вариационного ряда

В симметричных рядах имеет место следующее соотношение моды, медианы и средней арифметической

В случае, если , имеет место левосторонняя асимметрия ряда.

В случае, если , имеет место правосторонняя асимметрия ряда.

х
f
 
 
 
f
f
х
х
Мода и медиана,в отличие от степенных средних, являются конкретными характеристиками ряда. Медиана – характеризует центр, вычисляется проще и не чувствительна к концам интервала. Мода – наиболее вероятное значение в изучаемой совокупности (например, наиболее возможные результаты).

1 2 3

 

 

1 – распределение с левосторонней асимметрией; 2 – распределение с правосторонней асимметрией; 3 – нормальное (симметричное) распределение.

 




Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 961; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.