КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Моделирование системы с регулятором положения
Для решения задачи по перемещению механизма в заданное положение (позицию) применяют системы с регулятором положения. Часто эти системы называют позиционными. К таким системам можно отнести электропривод нажимного устройства, летучих ножниц, манипуляторов и т.д. Структурная схема позиционной системы приведена на рис. 18а. Модель системы в программе АС 3.1 приведена на рисунке 18б.(файл POS1.sa). Внутренние контуры регулирования: контур тока якоря и контур частоты вращения рассмотрены в предыдущих разделах. Остановимся подробнее на внешнем контуре положения и звеньях, входящих в этот контур. Заданное и текущее значения регулируемой координаты обозначены соответственно SЗ и S.
а) б) Рис. 18.
Звено № 11 связывает частоту вращения двигателя и угол поворота вала. По характеру – это интегратор без ограничения выходной переменной. Звено № 12 является коэффициентом связи между углом поворота вала двигателя и регулируемой координатой позиционной системы S. Рассмотрим несколько частных случаев расчета этого коэффициента. а) Регулируемой координатой является угол поворота вала двигателя. В этом случае kП = 1.Под параметром S следует понимать заданное и текущее значение угла поворота вала двигателя. б) Регулируется угол поворота механизма, связанного с двигателем редуктором с передаточным числом i. Обычно i определяется, как отношение скоростей или углов поворота входного и выходного валов редуктора (при этом коэффициент передачи редуктора ). В этом случае . в) Отрабатывается линейное перемещение механизма, например перемещение нажимного винта прокатного стана, вращаемого электродвигателем через редуктор с передаточным числом i. Введя обозначение шага винта h, для определения kП получим выражение: . В общем случае коэффициент kП следует рассчитывать, исходя из кинематической схемы механизма и его параметров. Звено № 1 представляет собой передаточную функцию измерительно-преобразующего устройства (ИПУ). Этот элемент системы преобразует рассогласование между заданным и текущим значениями регулируемой угловой или линейной координаты в напряжение соответствующей величины и полярности. В зависимости от того, какой является система регулирования положения: цифровой (дискретной) или аналоговой аппаратная реализация ИПУ может быть различной. В дискретных системах для контроля перемещения или положения используют импульсные или позиционно-кодовые датчики. Для реализации ИПУ применяют счетчики, сумматоры, цифроаналоговые преобразователи. В аналоговых системах используют сельсины, поворотные трансформаторы, потенциометры, связанные с валом двигателя или механизма. При необходимости эта связь осуществляется через редуктор. Преобразование переменного напряжения сельсина в постоянное соответствующей величины и полярности производится с помощью фазочувствительного выпрямителя. В модели ИПУ аппроксимировано апериодическим звеном. В ряде случаев инерционностью устройства можно пренебречь и аппроксимировать его безынерционным усилителем с ограничением выхода. Коэффициент звена можно рассчитать по формуле: , где U0 – принятый уровень максимального напряжения ИПУ, S0 – соответствующее этому уровню угловое или линейное рассогласование между заданным и текущим значением. В качестве S0 принимают так называемый минимальный угол (путь) торможения с номинальной скорости до останова, (предполагается, что торможение производится с максимальным отрицательным ускорением). Для расчета используются известные формулы из теории электропривода и теоретической механики.
, где ωн – номинальная частота вращения двигателя, ε – угловое ускорение при торможении, J – приведенный к валу двигателя момент инерции, МДТ и Мс – максимальный момент двигателя при торможении и момент статического сопротивления. Звено № 2 моделирует регулятор положения. В позиционных системах применяют как линейные, так и нелинейные (параболические) регуляторы положения. В настоящее время для регулирования положения применяются не аналоговые, а цифровые системы регулирования. Регулятором является, как правило, программируемый логический контроллер (ПЛК), преобразующий рассогласование ΔS = Sз – S в задание на скорость электропривода. Если регулирование скорости осуществляется аналоговым регулятором, то контроллер преобразует ΔS в соответствующий уровень напряжения, подаваемого в качестве задания на вход регулятора скорости. При использовании контроллера в качестве регулятора скорости результаты расчета алгоблока регулирования положения являются входными данными алгоблока регулирования скорости электропривода. При таком подходе в модели звенья 1 и 2 объединяются в один элемент – регулятор положения (контроллер), выполняющий одновременно функции измерительно-преобразующего устройства и собственно регулятора(линейного или параболического). Из литературы известно [6], что задание на скорость(выход регулятора положения) и рассогласование по положению связана соотношением:
В этом случае обеспечивается торможение с максимальной интенсивностью и минимальный путь торможения S0 при торможении с номинальной скорости. Значение коэффициента К зависит от размерности ΔS и величины максимального задания на скорость. Статическая характеристика регулятора положения приведена на рисунке: При ΔS ≤ S0 выход и вход связаны зависимостью , а при ΔS > S0 выход регулятора постоянен и равен максимальному заданию на скорость U 0, например 10В Для улучшения работы позиционной системы начальные участки параболы линеаризуются и вводится порог чувствительности регулятора. В этом случае ветви параболы смещаются на величину Sc относительно начала координат и характеристика окончательно выглядит так: Звенья № 14 и № 15 введены в модель для того, чтобы учесть изменение знака нагрузки в зависимости от направления перемещения. Контур тока якоря и частоты вращения (скорости) были рассмотрены ранее (звенья 3–10). Ниже приведены данные модели, взятые из описания механизма и полученные расчетным путем (формулы и расчеты не приведены). i=50; kП =0,02; MH=83 H*м; MC=20 H*м; kC=0,095; ТДС=0,03с; МДТ=208; kРС=6,6; ε=160; S0=0,7. ; . В позиционных системах применяют также и линейные регуляторы положения. Коэффициент регулятора можно рассчитать по формуле:
Ниже приведены результаты расчета контура положения, в которых использованы данные двухконтурной системы регулирования скорости.
Было задано отработать поворот на 360° без нагрузки. Результаты моделирования представлены на рисунке. График 1 соответствует изменению тока, график 2 отражает изменение скорости при отработке перемещения, изображенного на графике 3. Графики изображены в относительных единицах.
Дата добавления: 2014-12-24; Просмотров: 506; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |