Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Реализация фильтров на операционных усилителях




С ростом порядка фильтра его фильтрующие свойства улучшаются. На одном ОУ достаточно просто реализуется фильтр второго порядка. Для реализации фильтров нижних частот, высших частот и полосовых фильтров широкое применение нашла схема фильтра второго порядка Саллена-Ки. На рис. 17 приведен ее вариант для ФНЧ. Отрицательная обратная связь, сформированная с помощью делителя напряжения R 3, ( – 1) R 3, обеспечивает коэффициент усиления, равный . Положительная обратная связь обусловлена наличием конденсатора С 2. Передаточная функция фильтра имеет вид:

. (21)

Рис.17. Активный фильтр нижних частот второго порядка

Расчет схемы существенно упрощается, если с самого начала задать некоторые дополнительные условия. Можно выбрать коэффициент усиления  = 1. Тогда ( – 1) R 3 = 0, и резистивный делитель напряжения в цепи отрицательной обратной связи можно исключить. ОУ оказывается включенным по схеме неинвертирующего повторителя. В простейшем случае он может быть даже заменен эмиттерным повторителем на составном транзисторе. При  = 1 передаточная функция фильтра принимает вид:

.

Считая, что емкости конденсаторов С 1 и С 2 выбраны, получим для заданных значений а 1 и b 1 (см. (13)):

K 0 = 1,

.

Чтобы значения R 1 и R 2 были действительными, должно выполняться условие

.

Расчеты можно упростить, положив R 1 = R 2 = R и С 1 = С 2 = С. В этом случае для реализации фильтров различного типа необходимо изменять значение коэффициента . Передаточная функция фильтра будет иметь вид

.

Отсюда с учетом формулы (13) получим

,

.

Из последнего соотношения видно, что коэффициент  определяет добротность полюсов и не влияет на частоту среза. Величина  в этом случае определяет тип фильтра.

Поменяв местами сопротивления и конденсаторы получим фильтр верхних частот (рис. 18). Его передаточная функция имеет вид:

Рис. 18. Активный фильтр верхних частот второго порядка

Для упрощения расчетов положим  = 1 и С 1 = С 2 = С. При этом получим следующие формулы:

K беск= 1, R 1 = 2/c Ca 1, R 2 = a 1/2c Cb 1.

Если АЧХ фильтра второго порядка оказывается недостаточно крутой, следует применять фильтр более высокого порядка. Для этого последовательно соединяют звенья, представляющие собой фильтры первого и второго порядка. В этом случае АЧХ звеньев фильтра перемножаются (в логарифмическом масштабе – складываются). Однако следует иметь в виду, что последовательное соединение, например, двух фильтров Баттерворта второго порядка, не приведет к получению фильтра Баттерворта четвертого порядка. Результирующий фильтр будет иметь другую частоту среза и другую частотную характеристику. Поэтому необходимо задавать такие коэффициенты звеньев фильтра, чтобы результат перемножения их частотных характеристик соответствовал желаемому типу фильтра.

Полосовой фильтр второго порядка можно реализовать на основе схемы Саллена-Ки, как это показано на рис. 19. Передаточная функция фильтра имеет вид:

. (22)

Рис. 19. Схема полосового фильтра второго порядка

Приравнивая коэффициенты этого выражения к коэффициентам передаточной функции (18), получим формулы для расчета параметров фильтра:

f p = 1/2 RC; K p =/(3 –); Q = 1/(3 –).

Недостаток схемы состоит в том, что коэффициент усиления на резонансной частоте K p и добротность Q не являются независимыми друг от друга. Достоинство схемы – ее добротность изменяется в зависимости от , тогда как резонансная частота от коэффициента  не зависит.

Активный заграждающий фильтр может быть реализован на основе двойного Т-образного моста. Хотя двойной Т-образный мост сам по себе является заграждающим фильтром, его добротность составляет только 0,25. Ее можно повысить, если мост включить в цепь обратной связи ОУ. Один из вариантов такой схемы приведен на рис. 20. Сигналы высоких и низких частот проходят через двойной Т-образный мост без изменения. Для них выходное напряжение фильтра равно  U вх. На резонансной частоте выходное напряжение равно нулю. Передаточная функция схемы на рис. 20 имеет вид:

,

или учитывая, что р= 1/ RC,

. (23)

С помощью этого выражения можно непосредственно определять требуемые параметры фильтра. Задав коэффициент усиления неинвертирующего усилителя равным 1, получим Q =0,5. При увеличении коэффициента усиления добротность растет и стремится к бесконечности, если  стремиться к 2.

Рис. 20. Активный заграждающий фильтр с двойным Т-образным мостом




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 783; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.