Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Связь между цифровыми и аналоговыми величинами




Применение ЦАП

Схемы применения цифро-аналоговых преобразователей относятся не только к области преобразования код - аналог. Пользуясь их свойствами можно определять произведения двух или более сигналов, строить делители функций, аналоговые звенья, управляемые от микроконтроллеров, такие как аттенюаторы, интеграторы. Важной областью применения ЦАП являются также генераторы сигналов, в том числе сигналов произвольной формы. Ниже рассмотрены некоторые схемы обработки сигналов, включающие ЦА-преобразователи.

Обработка чисел, имеющих знак

До сих пор при описании цифро-аналоговых преобразователей входная цифровая информация представлялась в виде чисел натурального ряда (униполярных). Обработка целых чисел (биполярных) имеет определенные особенности. Обычно двоичные целые числа представляются с использованием дополнительного кода. Таким путем с помощью восьми разрядов можно представить числа в диапазоне от -128 до +127. При вводе чисел в ЦАП этот диапазон чисел сдвигают до 0...255 путем прибавления 128. Числа, большие 128, при этом считаются положительными, а числа, меньшие 128, - отрицательными. Среднее число 128 соответствует нулю. Такое представление чисел со знаком, называется смещенным кодом. Прибавление числа, составляющего половину полной шкалы данной разрядности (в нашем примере это 128), можно легко выполнить путем инверсии старшего (знакового) разряда. Соответствие рассмотренных кодов иллюстрируется табл. 1.

Таблица 1

Десятичный Дополнительный Смещенный Аналог I/Iмакс
-1 -127 -128     127/255 1/255 -1/255 -127/255 -128/255

Чтобы получить выходной сигнал с правильным знаком, необходимо осуществить обратный сдвиг путем вычитания тока или напряжения, составляющего половину шкалы преобразователя. Для различных типов ЦАП это можно сделать разными способами. Например, у ЦАП на источниках тока, диапазон изменения опорного напряжения ограничен, причем выходное напряжение имеет полярность обратную полярности опорного напряжения. В этом случае биполярный режим наиболее просто реализуется включением дополнительного резистора смещения Rсм между выходом ЦАП и входом опорного напряжения (рис. 18а). Резистор Rсм изготавливается на кристалле ИМС. Его сопротивление выбрано таким, чтобы ток Iсм составлял половину максимального значения выходного тока ЦАП.

В принципе, аналогично можно решить задачу смещения выходного тока и для ЦАП на МОП-ключах. Для этого нужно проинвертировать опорное напряжение, а затем сформировать из -Uоп ток смещения, который следует вычесть из выходного тока ЦАП. Однако для сохранения температурной стабильности лучше обеспечить формирование тока смещения непосредственно в ЦАП. Для этого в схему на рис. 8а вводят второй операционный усилитель и второй выход ЦАП подключают ко входу этого ОУ (рис. 18б).

Второй выходной ток ЦАП, согласно (10),

. (21)

На входе ОУ1 ток I'вых суммируется с током Iмр, соответствующим единице младшего разряда входного кода. Суммарный ток инвертируется. Ток, протекающий через резистор обратной связи Rос ОУ2, составляет

, (22)

или, с учетом (8)

. (23)

При

, (24)

а при

. (25)

Это в случае N=8 с точностью до множителя 2 совпадает с данными табл. 6, с учетом того, что для преобразователя на МОП-ключах максимальный выходной ток

.

Если резисторы R2 хорошо согласованы по сопротивлению, то абсолютное изменение их величины при колебаниях температуры не влияет на выходное напряжение схемы.

У цифро-аналоговых преобразователей с выходным сигналом в виде напряжения, построенных на инверсной резистивной матрице (см. рис. 9), можно более просто реализовать биполярный режим (рис. 18в). Как правило, такие ЦАП содержат на кристалле выходной буферный усилитель. Для работы ЦАП в униполярном включении свободный вывод нижнего по схеме резистора R не подключают, либо подключают к общей точке схемы для удвоения выходного напряжения. Для работы в биполярном включении свободный вывод этого резистора соединяют со входом опорного напряжения ЦАП. ОУ в этом случае работает в дифференциальном включении и его выходное напряжение с учетом (16)

. (26)

Перемножители и делители функций

Как уже указывалось выше, ЦА-преобразователи на МОП-ключах, допускают изменение опорного напряжения в широких пределах, в том числе и смену полярности. Из формул (8) и (17) следует, что выходное напряжение ЦАП пропорционально произведению опорного напряжения на входной цифровой код. Это обстоятельство позволяет непосредственно использовать такие ЦАП для перемножения аналогового сигнала на цифровой код.

При униполярном включении ЦАП выходной сигнал пропорционален произведению двухполярного аналогового сигнала на однополярный цифровой код. Такой перемножитель называют двухквадрантным. При биполярном включении ЦАП (рис. 18б и 18в) выходной сигнал пропорционален произведению двухполярного аналогового сигнала на двухполярный цифровой код. Эта схема может работать как четырехквадрантный перемножитель.

Деление входного напряжения на цифровой масштаб MD=D/2N выполняется с помощью схемы двухквадрантного делителя (рис. 19).

В схеме на рис. 19а преобразователь на МОП-ключах с токовым выходом работает как преобразователь "напряжение-ток", управляемый кодом D и включенный в цепь обратной связи ОУ. Входное напряжение подается на свободный вывод резистора обратной связи ЦАП, размещенного на кристалле ИМС. В этой схеме выходной ток ЦАП

,

что при выполнении условия Rос=R дает

.

Следует отметить, что при коде "все нули" обратная связь размыкается. Предотвратить этот режим можно, либо запретив такой код программно, либо включив между выходом и инвертирующим входом ОУ резистор с сопротивлением, равным R·2N+1.

Схема делителя на основе ЦАП с выходом в виде напряжения, построенном на инверсной резистивной матрице и включающем буферный ОУ, приведена на рис. 8.19б. Выходное и входное напряжения этой схемы связаны уравнением

. (27)

Отсюда следует

.

В данной схеме усилитель охвачен как положительной, так и отрицательной обратными связями. Для преобладания отрицательной обратной связи (иначе ОУ превратится в компаратор) необходимо выполнение условия D<2N-1 или MD<1/2. Это ограничивает значение входного кода нижней половиной шкалы.

Аттенюаторы и интеграторы на ЦАП

Аттенюаторы, т.е. регуляторы уровня сигнала, с цифровым управлением гораздо более надежны и долговечны, чем традиционные аттенюаторы на основе переменных резисторов. Их целесообразно использовать в измерительных приборах и других устройствах, требующих подстройки параметров, особенно автоматической. Такие аттенюаторы можно наиболее просто построить на основе перемножающего ЦАП с инверсной резистивной матрицей и буферным усилителем. В принципе для этой цели подойдет любой ЦАП указанного типа, но некоторыми фирмами выпускаются преобразователи, оптимизированные для выполнения указанной функции. На рис. 20а приведена схема аттенюатора на переменном резисторе, а на рис. 20б - аналогичная схема на перемножающем ЦАП.

Если входной сигнал - однополярный, целесообразно использовать ЦАП с однополярным питанием, но буферный ОУ должен иметь выход "rail-to-rail", т.е. его выходное напряжение должно достигать нуля и напряжения питания. Если ЦАП - многоканальный, то у каждого преобразователя микросхемы должен быть индивидуальный вход опорного напряжения. Этим требованиям в разной степени удовлетворяют такие ИМС ЦАП, как 2-х канальный 12-разрядный МАХ532, 4-х канальный 8-разрядный МАХ509, 8-ми канальный 8-разрядный AD8441, 8-ми канальный 8-разрядный DAC-8841 и др.

Для построения интегратора с цифровой установкой постоянной времени интегрирования можно использовать базовую схему интегратора, а в качестве входного резистора включить ЦАП с суммированием напряжений (рис. 12). На базе такой схемы можно построить фильтры, в том числе фильтры на основе метода переменных состояния, перестраиваемые генераторы импульсов и т.д.

Системы прямого цифрового синтеза сигналов

Важной областью применения ЦАП является синтез аналоговых сигналов необходимой формы. Аналоговые генераторы сигналов - синусоидальной, треугольной и прямоугольной форм - имеют низкую точность и стабильность, не могут управляться от ЭВМ. В последние годы получили развитие системы прямого цифрового синтеза сигналов, обеспечивающие высокую точность задания частоты и начальной фазы сигналов, а также высокую верность воспроизведения их формы. Более того, эти системы позволяют генерировать сигналы большого многообразия форм, в том числе и форм, задаваемых пользователем. Упрощенная блок-схема генератора прямого цифрового синтеза сигналов приведена на рис. 21.

В принципе, системы прямого цифрового синтеза просты. Более того, теория и основные способы построения таких систем известны уже около 30 лет. Правда, только недавно появились ЦАП и специализированные аналого-цифровые ИМС, подходящие для синтеза сигналов в широкой полосе частот.

Схема прямого цифрового синтеза содержит три основных блока: генератор фазового угла, память и ЦАП. Генератор фазового угла в типичном случае представляет собой накапливающий сумматор с регистром. Работает он просто как регистр фазы, содержимое которого получает приращение на некоторый фазовый угол через заданные интервалы времени. Приращение фазы  загружается в виде цифрового кода во входные регистры. Память играет роль таблицы функций. Код текущей фазы поступает на ее адресные входы, а с выхода данных на вход ЦА-преобразователя поступает код, соответствующий текущему значению заданной функции. ЦАП в свою очередь формирует аналоговый сигнал.

Регистр содержит текущую фазу выходного сигнала в виде целого числа, которое будучи поделено на 2 N, где N -разрядность сумматора, равно доле периода. Увеличение разрядности регистра повышает только разрешающую способность этой доли. Частота выходного сигнала равна произведению частоты тактов fтакт на приращение фазы в каждом периоде тактов. При использовании N-разрядного сумматора частота выходного сигнала будет равна

 

 

МИКРОКОНТРОЛЛЕР

Первая микросхема была спроектирована и изготовлена в компании Texas Instruments под руководством Джека Килби (Jack Kilby) в 1958 году. Независимо от Килби приблизительно в то же время Роберт Нойс (Robert Noyce) в основанной им вместе c Гордоном Муром (Gordon Moore) и еще шестью коллегами компании Fairchild Semiconductor объединил полупроводниковые элементы на едином кристалле кремния. Именно Fairchild первой в Кремниевой долине наладила успешное коммерческое производство микрочипов в 1961 году. А спустя десятилетие основанная Нойсом и Муром компания Intel выпустила первый микропроцессор.

Микроконтроллер - компьютер на одной микросхеме. Предназначен для управления различными электронными устройствами и осуществления взаимодействия между ними в соответствии с заложенной в микроконтроллер программой. В отличие от микропроцессоров, используемых в персональных компьютерах, микроконтроллеры содержат встроенные дополнительные устройства. Эти устройства выполняют свои задачи под управлением микропроцессорного ядра микроконтроллера.

К наиболее распространенным встроенным устройствам относятся устройства памяти и порты ввода/вывода (I/O), интерфейсы связи, таймеры, системные часы. Устройства памяти включают оперативную память (RAM), постоянные запоминающие устройства (ROM), перепрограммируемую ROM (EPROM), электрически перепрограммируемую ROM (EEPROM). Таймеры включают и часы реального времени, и таймеры прерываний. Средства I/O включают последовательные порты связи, параллельные порты (I/O линии), аналого-цифровые преобразователи (A/D), цифроаналоговые преобразователи (D/A), драйверы жидкокристаллического дисплея (LCD) или драйверы вакуумного флуоресцентного дисплея (VFD). Встроенные устройства обладают повышенной надежностью, поскольку они не требуют никаких внешних электрических цепей.

В отличие от микроконтроллера контроллером обычно называют плату, построенную на основе микроконтроллера, но достаточно часто при использовании понятия "микроконтроллер" применяют сокращенное название этого устройства, отбрасывая приставку "микро" для простоты. Также при упоминании микроконтроллеров можно встретить слова "чип" или "микрочип", "кристалл" (большинство микроконтроллеров изготавливают на едином кристалле кремния), сокращения МК или от английского microcontroller - MC.

Микроконтроллеры можно встретить в огромном количестве современных промышленных и бытовых приборов: станках, автомобилях, телефонах, телевизорах, холодильниках, стиральных машинах... и даже кофеварках. Среди производителей микроконтроллеров можно назвать Intel, Motorola, Hitachi, Microchip, Atmel, Philips, Texas Instruments, Infineon Technologies (бывшая Siemens Semiconductor Group) и многих других.


Основным классификационным признаком микроконтроллеров является разрядность данных, обрабатываемых арифметико-логическим устройством (АЛУ). По этому признаку они делятся на 4-, 8-, 16-, 32- и 64-разрядные. Сегодня наибольшая доля мирового рынка микроконтроллеров принадлежит восьмиразрядным устройствам (около 50 % в стоимостном выражении). За ними следуют 16-разрядные и DSP-микроконтроллеры (DSP - Digital Signal Processor - цифровой сигнальный процессор), ориентированные на использование в системах обработки сигналов (каждая из групп занимает примерно по 20 % рынка). Внутри каждой группы микроконтроллеры делятся на CISC- и RISC-устройства. Наиболее многочисленной группой являются CISC-микроконтроллеры, но в последние годы среди новых чипов наметилась явная тенденция роста доли RISC-архитектуры.

Тактовая частота, или, более точно, скорость шины, определяет, сколько вычислений может быть выполнено за единицу времени. В основном производительность микроконтроллера и потребляемая им мощность увеличиваются с повышением тактовой частоты. Производительность микроконтроллера измеряют в MIPS (Million Instruсtions per Second - миллион инструкций в секунду).

Первый микроконтроллер

Перый микроконтроллер появился на свет в 1976 году, через 5 лет после создания первого микропроцессора. Это была микросхема фирмы Intel, получившая имя 8048.
Помимо центрального процессора, на кристалле находились 1 КБайт памяти программ, 64 байта памяти данных, два восьмибитных таймера, генератор часов и 27 портов ввода/вывода.
Микроконтроллеры семейства 8048 использовались в игровых консольных приставках Magnavox Odyssey, в клавиатурах первых IBM PC и в ряде других устройств.
Существует также мнение, что первым микроконтроллером был 4-х pазpядный TMS1000 от Texas Instruments, котоpый содеpжал ОЗУ (32 байта), ПЗУ (1К), часы и поддеpжку ввода-вывода, что позволяло считать его именно первым микpоконтpоллеpом. Выпущенный в 1972 году, он имел новую по тем временам возможность - добавление новых инструкций.
8051
Следующий микроконтроллер Intel 8051, выпущенный в 1980 году, стал поистине классическим образцом устройств данного класса. Этот 8-битный чип положил начало целому семейству микроконтроллеров, которые господствовали на рынке вплоть до недавнего времени.
Аналоги 8051 выпускали советские предприятия в Минске, Киеве, Воронеже, Новосибирске, на них выросло целое поколение отечественных разработчиков.
Большинство фирм производителей микроконтроллеров и сегодня выпускают устройства, основанные на этой архитектуре. Среди них Philips, Atmel, Dallas, OKI, Siemens — можно перечислить более полутора десятков имен. Но 51-е семейство постепенно сдает свои позиции более молодым и совершенным микроконтроллерам.
Motorola и Zilog
Другими яркими представителями восьмиразрядных микроконтроллеров явились изделия компаний Motorola (68HC05, 68HC08, 68HC11) и Zilog (Z8).
Motorola длительное время не предоставляла средств, позволяющих дешево и быстро начать работать с ее контроллерами, что явно не способствовало их популярности у некорпоративных разработчиков. Однако стоит заметить, что за рубежом микроконтроллеры от Motorola занимают лидирующее положение на рынке. В нашей стране их популярность не очень высока, возможно, еще в силу отсутствия достаточного количества доступных учебных материалов и средств разработки.
Микроконтроллеры фирмы Zilog, основанной бывшими сотрудниками Intel, еще недавно казавшиеся столь многообещающими, не выдержали гонки в стремительно развивающемся секторе рынка, и сегодня система команд Z8 выглядит достаточно устаревшей.
Microchip

Первые значительные перемены произошли с появлением PIC-контроллеров фирмы Microchip. Эти чипы предлагались по рекордно низким ценам, что позволило им в короткий срок захватить значительную часть рынка микроконтроллеров. К тому же кристаллы от Microchip оказались не уступающими, а нередко и превосходящими микроконтроллеры х51 по производительности и не требовали дорогостоящего программатора.
Вместе с контроллерами появились дешевые комплекты PICSTART, содержащие все, что было нужно для того, чтобы, не имея ни средств, ни навыков работы с PIC-контроллерами, быстро создать и отладить на нем продукт.
Эти микроконтроллеры имели хорошие порты, но все остальное было сделано весьма неудобно. Архитектура оставляла желать лучшего, система команд была крайне ограничена. Тем не менее, PIC-контроллеры остаются популярными в тех случаях, когда требуется создать недорогую систему, не предъявляющую высоких требований по ее управлению.
Scinex
На волне успеха PIC-контроллеров появились очень похожие на них изделия фирмы Scinex. Они обладали уже 52-мя командами против PIC-овских 33-х. Были добавлены хорошие инструкции для работы с памятью, улучшена архитектура, каждая команда выполнялась за один такт, что при прочих равных условиях было вчетверо быстрее, чем у Microchip, и к тому же их тактовая частота достигала 100 МГц.
Столь высокая скорость контроллера позволяет его создателям отказаться от различной периферии — таймеров, счетчиков, регистров сдвига в приемопередатчиках, — все это рекомендуется реализовывать чисто программными средствами, благо быстродействия для этого хватает: внутри — лишь сверхбыстрое ядро, память да порты ввода/вывода.
Atmel
Настоящая революция в мире микроконтроллеров произошла в 1996 году, когда корпорация Atmel представила свое семейство чипов на новом прогрессивном ядре AVR. Более продуманная архитектура AVR, быстродействие, превосходящее контроллеры Microchip, привлекательная ценовая политика способствовали оттоку симпатий многих разработчиков от недавних претендентов на звание контроллера номер 1.
Микроконтроллеры AVR имеют более развитую систему команд, насчитывающую до 133 инструкций, производительность, приближающуюся к 1 MIPS/МГц, Flash ПЗУ программ с возможностью внутрисхемного перепрограммирования. Многие чипы имеют функцию самопрограммирования. AVR-архитектура оптимизирована под язык высокого уровня Си. Кроме того, все кристаллы семейства совместимы "снизу вверх".
Огромную роль сыграла доступность программного обеспечения и средств поддержки разработки. У Atmel много бесплатно распространяемых программных продуктов. Хорошо известно, что развитые средства поддержки разработок при освоении и знакомстве с любым микроконтроллерным семейством играют не менее значимую роль, чем сами кристаллы. Фирма Atmel уделяет этому вопросу большое внимание. Чрезвычайно удачная и совершенно бесплатная среда разработки AVR Studio, работающая под Windows.
Ведущие сторонние производители выпускают полный спектр компиляторов, программаторов, ассемблеров, отладчиков, разъемов и адаптеров.
Для начинающего разработчика немаловажным является и то, что для программирования AVR можно обойтись вовсе без аппаратного программатора. Самым популярным сопособом программирования этих микроконтроллеров являются пять проводков, подсоединенных к параллельному порту персонального компьютера.
Можно считать, что AVR постепенно становится еще одним индустриальным стандартом среди 8-разрядных микроконтроллеров общего назначения. Они легкодоступны в России и отличаются в среднем невысокой стоимостью, успешно конкурируя с изделиями компании MICROCHIP. Все это делает микроконтроллеры Atmel AVR одними из самых привлекательных для обучения.
Список микроконтроллеров, упомянутых на этой странице, далеко не полный. Среди крупных производителей микроконтроллеров следовало бы подробнее упомянуть Cypress, Texas Instruments, Dallas Semiconductor, Philips, Infineon (Siemens), STMicroelectronics, Futjitsu, Mitsubishi Electronics, Temic, National Semoconductor, Oki Semiconductor и др.
Отдельного упоминания заслуживают мощные контроллеры фирмы Toshiba. Хотя у них и отсутствует внутренняя память программ, нужен кристалл внешнего ПЗУ, но они имеют хорошо развитую периферию и способны поддерживать модули памяти типа SIMM, используемые в IBM. За рубежом эти контроллеры ставятся в DVD-проигрыватели, CD-проигрыватели, автоответчики, — словом, туда, где надо работать с большими объемами памяти.
Также следует сказать о самых маленьких в мире микроконтроллерах ACE. Это 8-разрядные чипы размерами около 3х4 мм, из 8 выводов 6 - это порты ввода/вывода. По возможностям они похожи на Microchip или AVR, но в очень маленьком корпусе. Им можно сделать минимальное обрамление и поместить в ручку какого-нибудь изделия.
И, конечно же, нельзя пройти мимо широко развитой линии микроконтроллеров H8 фирмы Hitachi. Это большая семья микроконтроллеров, включающая H8/300, H8/300H, H8/500 и H8S серии. Основа архитектуры H8 базируется на решениях фирмы DEC и их легендарном компьютере PDP-11. Несколько компаний выпускают для этих микроконтроллеров компиляторы ассемблера и языков высокого уровня. H8 могут быть найдены в цифровых фотокамерах, контроллерах принтеров и различных автоматических подсистемах. Также они трудятся в контроллерных блоках RCX робоконструкторов Lego MindStorm




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 906; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.