Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Нефтяные топлива




Водород Н2.Ведутся исследовательские работы по использованию водорода в качестве альтернативного топлива, так как газообразный водород имеет высокую теплоту сгорания и «чистые» продукты сгорания. Но препятствую этому высокая стоимость водорода и трудности, связанные с заправкой и хранением.

Жидкий водород представляет собой бесцветную жидкость без запаха. Газообразный водород – бесцветный газ без запаха. Твёрдый водород обладает кристаллической структурой. При охлаждении жидкого водорода ниже температуры кипения в нём появляются конгломераты кристаллов твёрдого водорода, количество которых увеличивается до полного исчезновения жидкого. Смесь жидкого и твёрдого водорода называется шугообразным водородом.

Массовая теплота сгорания водорода превышает массовую теплоту всех топлив для двигателей. Однако вследствие малой плотности водорода его объёмные энергетические характеристики хуже, чем у нефтяных топлив. Объёмная теплопроизводительность водородно-воздушной смеси меньше теплопроизводительности на основе бензина (на 15 %) и спирта (на 10 %). Температура самовоспламеняемости водородно-воздушной смеси выше, чем на базе углеводородных топлив, однако для её воспламенения требуется меньше количества энергии. Устойчивое воспламенение водорода можно обеспечить с помощью принудительного зажигания от электрической искры или дозы запального топлива. Возможно также с помощью катализатора. Водород может подаваться в цилиндр как вместе с воздухом, так и путём непосредственного впрыска.

Водородно-воздушные смеси сгорают со скоростями, превышающими скорости сгорания смесей на основе углеводородных топлив. Эти скорости значительно зависят от температуры. В условиях камеры сгорания скорость распространения пламени возрастает вследствие влияния турбулизации и повышенных давлений. Большие скорости сгорания обусловливают высокую жёсткость процесса сгорания. Например, при a = 1 скорость нарастания давления в цилиндре при прочих равных условиях примерно в 3 раза больше, чем при работе на бензиновоздушной смеси. При увеличении a скорость нарастания давления уменьшается.

Вследствие высоких скоростей и температур сгорания водородно-воздушной смеси в отработавших газах может содержаться значительное количество оксидов азота NOx. С обеднение смеси концентрация NOx уменьшается. Для снижения количества NOx можно применять рециркуляцию отработавших газов или добавку воды к водородному топливу. Очевидно, что при работе на водороде в отработавших газах не должно содержаться СО и СnНm, однако эксперименты обнаруживают их незначительное количество. Это объясняется выгоранием углеводородных смазочных материалов, попадающих в камеру сгорания.

Предел обеднения водородно-воздушной смеси определяется ухудшением динамики тепловыделения и, как следствие этого, неустойчивой работой двигателя.

Высокая диффузионная способность газообразного водорода обеспечивает хорошие условия смесеобразования, большие скорости сгорания водородно-воздушных смесей – благоприятную динамику тепловыделения.

Следует учитывать специфические свойства водорода. При нормальной и низкой температурах водород химически мало активен. Его реакционная способность возрастает под действием локальных источников теплоты, например, электрической искры, или в присутствии некоторых материалов, оказывающих каталитическое действие. Повышение активности водорода вызывается образованием радикалов водорода, обладающих высокой реакционной способностью. Высокая диффузионная способность водорода является причиной его проникновения через неплотности, микротрещины и т.п. в замкнутые объёмы конструкции двигателя или системы топливоподачи, что в сочетании с широким концентрационным пределом воспламеняемости и низким значением энергии воспламенения может явиться причиной взрыва.

При работе на водороде наблюдается повышенный износ поверхностей, контактирующих с водородом при высокой температуре. Это происходит из-за того, что при высокой температуре радикалы водорода, обладая высокой растворимостью и большой скоростью диффузии в стали, частично поглощаются поверхностными слоями металла и вступают в химические соединения с её составляющими. При этом образуется метан и малоуглеродистая сталь. Оставшиеся радикалы водорода восстанавливаются до молекул в поверхностных слоях металла с увеличением объёма. Образовавшиеся газы – метан и водород – создают внутриполостное давление, вызывающее образование сливающихся друг с другом микротрещин по границам зёрен металла. Обезуглероженная сталь теряет механические свойства.

Самой сложной задачей при использовании водорода является хранение его запаса на борту автомобиля. Возможны три способа его хранения:

¨ в сжатом виде в баллонах высокого давления;

¨ в сжиженном виде;

¨ в механически связанном виде в составе соединений, разрушающихся при выделении водорода.

Из-за низкой плотности газообразного водорода первый способ не имеет промышленного значения.

Главной задачей при получении, транспортировке и хранении жидкого водорода является обеспечение минимальных потерь в топливных баках. Баки снабжают системой сброса давления испарившегося водорода с дальнейшим дожиганием или адсорбцией его паров. Для снижения испаряемости и повышения плотности водорода при хранении возможно применение шугообразного водорода, содержащего 30…50 % твёрдого водорода.

Аммиак NH3. Его можно рассматривать как энергоноситель, обеспечивающий при его термическом разложении в камере сгорания получение водорода по реакции

 

2 NH3 N2 + 3 H2 – 92,6 кДж.

 

Неограниченные сырьевые ресурсы (аммиак производиться из водорода и азота воздуха) и хорошо развитая промышленная база позволяют рассматривать аммиак как одно из перспективных топлив.

Благодаря высокой температуре самовоспламенения пожарная опасность аммиака относительно невелика. По содержанию энергии в единице массы аммиак уступает водороду в 7 раз и бензину в 2,5 раза. Однако по объёмной энергоёмкости аммиак превосходит водород.

Аммиак обладает высокой детонационной стойкостью: октановое число по моторному методу равняется 111, по исследовательскому методу – 132.

К недостаткам аммиака можно отнести высокую температуру самовоспламенения по сравнению с нефтяными топливами. Вследствие чего малая скорость горения и практически невозможность применения в современных двигателях внутреннего сгорания без проведения специальных мероприятий по интенсификации его воспламенения и сгорания путём увеличения теплопровода в реакционную зону камеры сгорания. К таким мероприятиям можно отнести повышение степени сжатия при сокращении поверхности камеры сгорания, увеличение температуры в пристеночных зонах камеры сгорания, увеличение мощности разряда в свечах зажигания.

Использование аммиака снижает мощность и экономичность двигателя. Аммиак вызывает интенсивную коррозию большинства конструкционных материалов, используемых в двигателе строении.

Товарные моторные и большинство синтетических масел практически не меняют свойства при контакте с аммиаком.

 

 




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 635; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.