КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Визначення формули прискорення Коріоліса
ФОРМУЛА ПРИСКОРЕННЯ КОРІОЛІСА ТА ПРИРОДА ЙОГО ВИНИКНЕННЯ Лекція 20
Розглянемо тепер вираз прискорення Коріоліса, тобто третю групу доданків (ІІІ) в формулі (19.7) і надамо більш зручну форму запису цього прискорення. Нехай переносний рух, тобто рух рухомої системи, є обертальним навколо нерухомої осі з кутовою швидкістю . Вектор можна розглядати як радіус-вектор точки відносно точки (рис. 20.1). Тому швидкість цієї точки дорівнює: . (20.1) Але при обертальному русі рухомої системи швидкість точки визначається і за формулою Ейлера (), для якої радіусом-вектором є орт , тоді . (20.2) Порівнюючи (20.1) і (20.2), знаходимо, що . Аналогічно: , . (20.3) Підставимо значення похідних за часом від ортів рухомої системи (20.3) у вираз прискорення Коріоліса, тобто у групу доданків ІІІ із виразу (19.7): . (20.4) Як відомо з (20.3), вираз у дужках рівняння (20.12) – це вектор відносної швидкості точки . Отже, для вектора прискорення Коріоліса остаточно маємо: . (20.5)
Дата добавления: 2014-12-25; Просмотров: 753; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |