![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Симплексний метод
Розв’язання ЗЛП геометричним методом є наочним у випадку двох змінних. Для випадку ж більшої кількості змінних геометричний метод стає неможливим. Так званий симплекс-метод належить до числа аналітичних і є універсальним методом, яким можливо розв’язати будь-яку ЗЛП. Ідея симплексного методу полягає у наступному. Використовуючи систему обмежень, приведену до канонічного вигляду, тобто до системи лінійних рівнянь, знаходять її будь-який базисний розв’язок. Якщо цей розв’язок є допустимим, то перевіряють його на оптимальність. Якщо він є неоптимальним, то переходять до іншого допустимого базисного розв’язку. Симплексний метод гарантує, що при цьому новому розв’язку цільова функція якщо і не досягне оптимуму, то наблизиться до нього. Продовжують таку дію, доки не отримають оптимальний розв’язок. Якщо перший базисний розв’язок виявиться недопустимим, то за допомогою симплекс-методу здійснюється перехід до іншого базисного розв’язку, який дозволяє наблизитись до області допустимих розв’язків, доки на якомусь кроці не отримаємо допустимий базисний розв’язок. Після цього застосовують попередній механізм симплексного методу. Таким чином, застосування симплексного методу розпадається на два етапи: 1) знаходження допустимого базисного розв’язку системи обмежень; 2) знаходження оптимального розв’язку. При цьому кожний етап може містити кілька кроків, відповідних тому або іншому базисному розв’язку. Оскільки число базисних розв’язків завжди обмежено, то обмежено і число кроків симплекс-методу. Прослідкуємо ідею методу на прикладі. Приклад 5. Розглянемо ЗЛП у канонічному вигляді
Так як
Найбільше можливе значення Розглянуті вище дії (перехід від одного базисного розв’язку до іншого) можна проводити у таблиці за допомогою алгоритму Жордана-Гауса.
Правила вибору розв’язуючого елемента (тобто змінних, які переходять з вільних у базисні та навпаки), які були проілюстровані у прикладі, можна формалізувати у вигляді алгоритму симплекс-методу: 0 крок. Записуємо ЗЛП у канонічному вигляді, обираємо будь-які базисні змінні та виражаємо їх через вільні. Складаємо симплекс-таблицю – таблицю коефіцієнтів виразу базисних змінних та цільової функції через вільні змінні. Якщо відповідний базисний розв’язок не є допустимим, переходимо до іншого базисного розв’язку (алгоритм цього переходу опишемо пізніше). 1 крок. Перевіряємо критерій оптимальності: в рядку а) в рядку б) складаємо невід’ємні відношення елементів останнього стовпчика до відповідних елементів розв’язуючого стовпчика та обираємо серед них найменше – це визначає розв’язуючий рядок. 2 крок. Виконуємо алгоритм Жордана-Гауса з обраним розв’язуючим елементом. Повторюємо кроки 1 і 2, доки критерій оптимальності не буде виконаним. Зауваження. Якщо розв’язується задача на знаходження максимуму цільової функції, критерій оптимальності змінюється на такий: в рядку Приклад 6. Розв’яжемо симплексним методом задачу про використання сировини, яка задана формулами (6), (7). Приведемо систему обмежень до канонічного вигляду:
Виразимо базисні змінні
Заносимо коефіцієнти у симплекс-таблицю
Відповідний базисний розв’язок
Відповідний базисний розв’язок
Відповідний базисний розв’язок
Відповідний базисний розв’язок Відмітимо, що під час переходу від одного базисного розв’язку до іншого значення цільової функції тільки збільшувалося, тобто ми поступово наближалися до максимуму. Порівняємо процес розв’язання задачі симплекс-методом з геометричним розв’язанням. Вихідний базисний розв’язок Під час розв’язання ЗЛП симплекс-методом можуть виникнути такі ускладнення: 1) процес переходу від однієї таблиці до іншої переривається, хоча оптимальний розв’язок не досягнутий. Перешкода виникає при виборі розв’язуючого рядка – не існує невід’ємних елементів у вибраному розв’язуючому стовпчику і, як наслідок, неможливо скласти невід’ємні відношення елементів останнього стовпчика до відповідних елементів розв’язуючого стовпчика. Це означає, що така ЗЛП не має оптимального розв’язку (область допустимих розв’язків і цільова функція на ній необмежені). 2) оптимальний розв’язок не досягається, хоча при переході немає перешкод (зациклення). В цьому випадку потрібно ще раз розглянути таблицю, з якої почався цикл і обрати інший розв’язуючий стовпчик.
Дата добавления: 2014-12-25; Просмотров: 462; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |