Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Как исчислять идеи.




 

В свое время великий Г.Лейбниц выдвинул программу "универсальной характеристики" - языка, символы которого отражали бы их смысл, то есть отношения к другим понятиям, - "его знаки сочетались бы в зависимости от порядка и связи вещей". Все мышление, по его идее, должно свестись просто к вычислениям на этом языке по определенным правилам. Пока этот проект удалось воплотить лишь наполовину - формализовать дедуктивный вывод (его делает и ЭВМ), а логику изобретения, логику воображения - нет.

Быть может, здесь окажется полезной комбинаторная геометрия (а наша модель относится к ней), цель которой - находить оптимальное сочетание некоторых элементов-фигур (подобный подход использовал ранее Эдвард де Боно). Модель хорошо отражает различные ситуации, например, наличие конкурирующих теорий - нескольких систем фигур, в которые укладывается данное множество фактов. Или появление факта, который не удается сложить из известных блоков. Тут приходится строить новую теорию - разбивать привычные фигуры на части и компоновать их по-новому (производить, соответственно, анализ и синтез).

Кроме чисто комбинаторных трудностей, препона тут еще и в том, что при долгом употреблении каждый образ начинает восприниматься как неделимое целое, с чем связаны догматизм в мышлении и бюрократизм в его многообразных проявлениях. Как правило, здесь нужен свежий взгляд, которым нередко обладает "человек со стороны".

Конечно, "игра в кубики" - лишь иллюстрация некоторых способов мышления, и говорить об универсальном подходе еще нельзя. И все же такая игра в некоторой степени проясняет, что мог иметь в виду Лейбниц, когда писал, что существует исчисление более важное, чем выкладки арифметики и геометрии, - исчисление идей.

В мозгу, вероятно, неясным пока способом создаются связи и отношения между образами - энграммами памяти, а сам мыслительный процесс сводится к перестройкам этой структуры. При этом действует и минимизация - мы ведь всегда ищем самое короткое представление совокупности фактов; раньше это называли принципом экономии мышления.

Вообще, потребность в развитии какой-то "новой математики и логики" назрела. Как указывали отцы кибернетики и теории систем Джон фон Нейман и Людвиг фон Берталанфи, "логика будет вынуждена претерпеть метаморфозу и превратиться в неврологию в гораздо большей степени, чем неврология - в раздел логики", и "уже давно предпринимаются попытки создать "гештальт-математику", в основе которой лежало бы не количество, а отношения, то есть форма и порядок".

 




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 273; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.