Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Нейронные сети и нейрокомпьютер




 

В последнее время активно ведутся также работы по построению моделей обработки информации в нервной системе. Большинство моделей основывается на схеме формального нейрона У.МакКаллока и У.Питтса, согласно которой нейрон представляет собой пороговый элемент, на входах которого имеются возбуждающие и тормозящие синапсы; в этом нейроне определяется взвешенная сумма входных сигналов (с учетом весов синапсов), а при превышении этой суммой порога нейрона вырабатывается выходной сигнал.

В моделях уже построены нейронные сети, выполняющие различные алгоритмы обработки информации: ассоциативная память, категоризация (разбиение множества образов на кластеры, состоящие из подобных друг другу образов), топологически корректное отображение одного пространства переменных в другое, распознавание зрительных образов, инвариантное относительно деформаций и сдвигов в пространстве решение задач комбинаторной оптимизации. Подавляющее число работ относится к исследованию алгоритмов нейросетей с прагматическими целями.

Предполагается, что практические задачи будут решаться нейрокомпьютерами - искусственными нейроподобными сетями, созданными на основе микроэлектронных вычислительных систем. Спектр задач для разрабатываемых нейрокомпьютеров достаточно широк: распознавание зрительных и звуковых образов, создание экспертных систем и их аналогов, управление роботами, создание нейропротезов для людей, потерявших слух или зрение. Достоинства нейрокомпьютеров - параллельная обработка информации и способность к обучению.

Несмотря на чрезвычайную активность исследований по нейронным сетям и нейрокомпьютерам, многое в этих исследованиях настораживает. Ведь изучаемые алгоритмы выглядят как бы "вырванным куском" из общего осмысления работы нервной системы. Часто исследуются те алгоритмы, для которых удается построить хорошие модели, а не те, что наиболее важны для понимания свойств мышления, работы мозга и для создания систем искусственного интеллекта. Задачи, решаемые этими алгоритмами, оторваны от эволюционного контекста, в них практически не рассматривается, каким образом и почему возникли те или иные системы обработки информации. Настораживает также чрезмерная упрощенность понимания работы нейронных сетей, при котором нейроны осмыслены лишь как суммирующие пороговые элементы, а обучение сети происходит путем модификации синапсов. Ряд исследователей, правда, рассматривает нейрон как значительно более сложную систему обработки информации, предполагая, что основную роль в обучении играют молекулярные механизмы внутри нейрона. Все это указывает на необходимость максимально полного понимания работы биологических систем обработки информации и свойств организмов, обеспечиваемых этими системами. Одним из важных направлений исследований, способствующих такому пониманию, наверное, может быть анализ того, как в процессе биологической эволюции возникали "интеллектуальные" свойства биологических организмов.

 

7.6.3. "ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗОБРЕТЕНИЯ" БИОЛОГИЧЕСКОЙ ЭВОЛЮЦИИ

 

Интересно разобраться, как в процессе биологической эволюции возникла человеческая логика. Анализ связан с глубокой гносеологической проблемой: почему человеческая логика применима к познанию природы? Кратко поясним проблему простым примером. Допустим физик, изучая динамику некоторого объекта, сумел в определенном приближении свести описание его к дифференциальному уравнению. Далее он, разумеется, интегрирует полученное уравнение согласно известным из математики правилам и получает характеристики движения объекта. Переход от дифференциального уравнения к характеристикам движения носит дедуктивный характер но, если быть предельно строгим, сей переход надо обосновывать: ведь физический объект совершенно необязательно должен подчиняться правилам человеческой логики!

Для понимания процесса возникновения логики предпринимаются попытки построить модельную теорию происхождения логики в биосфере. Такая теория могла бы содержать математические модели ключевых "интеллектуальных изобретений" биологической эволюции, акцентирующие внимание на биологическом значении и причинах возникновения этих изобретений, а также модели, характеризующие переходы между изобретениями разных уровней. Надежнее всего, видимо, начать с "самого начала" - с происхождения жизни и проследить весь путь биологической эволюции от простейших организмов до человека, выделяя на этом пути наиболее важные эволюционные открытия, ведущие к логике. Чтобы представить круг вопросов, которые составляют предмет модельной теории происхождения логики, отметим некоторые важные уровни "интеллектуальных изобретений".

Уровень первый - организм различает состояния вешней среды, память об этих состояниях записана в геноме и передается по наследству, организм адекватно использует различие сред, меняя свое поведение с изменением среды. Пример этого уровня - свойство регулирования синтеза белков в бактериях в ответ на изменение питательных веществ во внешней среде по схеме Ф.Жакоба и Ж.Моно. Данное свойство можно назвать элементарной сенсорикой.

Второй уровень - временное запоминание организмом состояния среды и адекватное, также временное, приспособление к ней. Пример этого уровня - привыкание, а именно постепенное угасание реакции раздражения на биологически нейтральный стимул.

Третий уровень - запоминание устойчивых связей между событиями в окружающей организм природе. Хороший пример - исследованный И.Павловым классический условный рефлекс, в котором происходит долговременное запоминание связи между условным и безусловным стимулами и подготовка к жизненно важным событиям во внешнем мире.

Между классическим условным рефлексом и логикой лежит еще целый ряд промежуточных уровней. Например, инструментальный условный рефлекс отличается от классического тем, что в нем для получения поощрения животному необходимо совершить заранее неизвестное ему действие. Цепь условных рефлексов - это система реакций, сформированная на основе ранее хранившихся в памяти животного условных связей.

Рассмотрение моделей "интеллектуальных изобретений" биологической эволюции показывает их чрезвычайную фрагментарность и слабую разработанность. Совершенно нет моделей переходов между "изобретениями" разных уровней. Сейчас можно только предварительно указать на некоторые аналогии. Например, выработку условного рефлекса можно рассматривать как происходящий в нервной системе животного элементарный вывод - "если за условным стимулом следует безусловный, а безусловный стимул вызывает определенную реакцию, то условный стимул также вызывает эту реакцию" - дальний предшественник формул дедуктивной логики.

Построение модельной теории возникновения логики может быть общей научной основой при создании искусственных интеллектуальных систем на бионических принципах. В рамках таких работ предстоит модельно сопоставить дарвиновскую (нет передачи по наследству приобретенных навыков) и ламарковскую (есть наследование приобретенных навыков) концепции эволюции и выяснить классы задач, для которых применима та или иная стратегия. Появляются возможности модельно проанализировать процесс возникновения нервной системы как специально предназначенной для быстрой и надежной обработки информации части управляющей системы.

Остается подчеркнуть, что в исследованиях по нейрокомпьютерам и по эволюционному моделированию уделяется очень мало внимания тем свойствам систем обработки информации, благодаря которым организмы приспосабливаются к окружающей среде, а также осмыслению того, как и почему возникали такие свойства. Поэтому идейное объединение этих исследований с анализом эволюции "интеллектуальных изобретений" биологических организмов очень актуально.

Будет ли компьютер когда-нибудь мыслить, как человек? Сегодня вряд ли кто-то сможет убедительно аргументировать положительный ответ на этот вопрос. Тем не менее ход развития электроники показывает, что дистанции между машиной и существом разумным постепенно сокращается.

В первые десятилетия после изобретения компьютера в его задачу входили лишь вычислительные работы, С 70-х годов компьютерную технику начали переориентировать с цифровой информации на различные системы символов, в том числе тексты. Следующий этап - он начался в 90-е - означая переход к работе с широкополосной информацией, включающей распознавание емких информационных образов. По мнению специалистов, в самом ближайшем будущем до 90% информации, обрабатываемой в компьютерах, будет связано именно с распознаванием образов. А следовательно возникает потребность в устройствах нового поколения.

Один из способов решения этой проблемы - создание нейрокомпьютеров. Как известно, человеческое мышление характеризуется функциональной асимметрией мозга. Логические задачи, связанные с обработкой различных символов и составлением последовательных цепочек умозаключений, как правило, решаются с помощью левого полушария. Оно же отвечает за речь.

А вот образное и ассоциативное мышление - это функции правого полушария. Поэтому человек с поврежденным правым полушарием прекрасно логически мыслит, способен говорить и понимать речь, но он не улавливает различных оттенков в интонации говорящего и не может устанавливать различные ассоциативные связи между словами. Такой индивид лишен чувства юмора, и при общении с ним возникают определенные трудности.

Нейрокомпьютер - это устройство, которое во многом имитирует работу человеческого мозга, особенно его правого полушария. Оно состоит из множества искусственных нейронов, напоминающих естественные. Электронные нейроны, как и их аналоги в мозгу человека, объединены в структуры на различных уровнях, между которыми осуществляется информационный обмен.

С помощью системы информационных уровней, или нейросетей, можно распознавать и обрабатывать огромные объемы образной информации. Более того, такие компьютерные сети обладают свойством самообучения или самопрограммирования.

Достоинство этих технологий также в том, что они предназначены для решения неформализуемых задач, для которых или еще нет соответствующей теории, или она в принципе не может быть создана. Кроме того, в процессе своего обучения нейросеть учится находить оптимальные решения поставленных задач, что является еще одним важным преимуществом.

Распознавание образов, сжатие информации, ассоциативная память - эти функции являются необходимыми для различных устройств с искусственным интеллектом. И создатели компьютерной техники уже достаточно продвинулись в этом направлении. Так, если сравнивать мощность искусственных и естественных нейросетей по емкости памяти и скорости работы, то искусственные нейросети уже превзошли уровень мухи, хотя еще не достигли уровня таракана. Однако тот, кто пытался поймать муху, может представить, какого типа задачи уже доступны нейросетям!

 

7.7. "ВИРТУАЛЬНАЯ РЕАЛЬНОСТЬ"

 

Процесс познания человеком мира вышел на новый виток. И этот новый уровень связан с разработкой и реализацией комплексной проблемы "виртуальная реальность" (Virtual Reality), активно развивающейся в университетах и промышленных компаниях США. Японии и Европы.

Важным отличием "виртуального" подхода от предыдущих методов компьютерного моделирования процессов, происходящих в сложных системах, является возможно более полное использование знаний об особенностях поведения человека, о человеческом мозге, о процессах обработки образной информации, о взаимодействии сенсорных каналов (зрительного, слухового, тактильного и прочих), о формировании у нас обобщенного образа мира - ведь мы еще плохо представляем, как именно это происходит.

Разумеется, любое попадание на новый уровень - это результат глубокой проработки и обобщения результатов работы на предыдущих уровнях. Поэтому в проблеме "виртуальной реальности" существенное место занимает то, что довольно давно вошло в компьютерный обиход, - цветная и трехмерная графика, интерактивные системы человеко-машинного общения.

Использование полисенсорной информации и соответствующих обратных связей привело к невиданному прогрессу в разработке аппаратуры (видео-, аудио-, сенсоров-шлемов, специальных перчаток с датчиками) и программных средств (в частности, новых типов баз данных). Все это хозяйство позволяет в реальном масштабе времени создать "эффект присутствия" как в глубине образа, так и на его поверхности, анализировать и отображать полученные знания с различной степенью детализации образа, интенсификации проявления различных его свойств, в различных ракурсах.

Первостепенную роль в разработке проблемы "виртуальной реальности", играют такие особенности "человеческого фактора", знания о которых получаются в результате нейропсихолингвистических исследований. К подобным особенностям относятся, в частности, обработка полисенсорной (иногда еще ее называют полимодальной) информации, адаптивная обратная связь, "взгляд изнутри" на объект, специфика механизмов межполушарной асимметрии мозга.

При изучении процессов восприятия человеком знаний о мире (а мир - это многоуровневая внешняя среда и многообъектная коммуникативная система) больше внимания традиционно уделялось этапам восприятия, формирования и, конечно, их компьютерному представлению. В настоящее же время на передний план выходят проблемы, понимания и интерпретации знаний, полученных по различным сенсорным каналам (имеются в виду цветовые оттенки, шероховатость поверхности, трехмерное полизвучание и тому подобное).

Подход к познанию мира, основанный на "виртуальной реальности", предполагает отображение знаний в "кибернетическое пространство" -(cyberspace) с учетом специфики человека на основе дуальной - "левополушарной" (логико-комбинаторной) и "правополушарной" (целостной, как говорят немцы, "гештальтной") стратегии обработки информации. В соответствии с "левополушарным принципом" реализуются сканирование по экрану, обход образа по контуру и логико-комбинаторная, численно-аналитическая и вероятностная обработки. "Правополушарный принцип" позволяет осуществить целостный охват входного паттерна на основе оценки многосвязности. Поэтому важным фактором в создании систем "виртуальной реальности" является использование нейросетевых моделей.

Еще одной гранью "виртуальной реальности" являются формализованные рассуждения субъекта, основанные на его личностных представлениях о добре и зле, красоте, возможном и недопустимом, отображение этих рассуждений в cyberspace. Подобный формальный аппарат и практически полный комплекс рассуждений уже разработаны Вацлавом Поляком.

В России работы в этой области ведутся рядом коллективов под эгидой секции "Нейроинтеллект" Российского научно-технического общества радиотехники, электроники и связи им. А.Попова. Разрабатывается программное обеспечение по интерпретации метафор, интонационных характеристик речи, определению состояния человека на основе мимики, а также детектированию газов из смеси, экологии, биотехнологии. При формировании "виртуальной реальности" должны, видимо, использоваться свойства, присущие живому мозгу, например, такие, как многосвязность и пластичность. Один из подходов поэтому и основан на изучении взаимного влияния этих свойств и характеристик (физических, геометрических, структурно-временных) в искусственных нейронных системах. В конкретной реализации модели, по-видимому, целесообразно использовать нано-технологию.

В США проблематику "виртуальной реальности" разрабатывают и применяют при создании продукции такие известные и мощные фирмы, как Intel, IBM, Apple, Silicon Graphics, Hewlett-Packard, Boeing, DEC, Northrop, Chrysler и новые, специализированные, такие, как VPL Research, SENSEB, Fake Space Labs, SIM-Graphics.

Вот некоторые конкретные приложения "виртуальной реальности" на практике. Фирма "Крайслер" с помощью фирмы IBM, используя трехмерные очки-линзы и сенсорные перчатки, сократила время проектирования очередной модели. Фирма "Боинг" использует подобный подход для обучения рабочих. Фирма "Нортроп" ускорила проектирование двигателя истребителя F-18. С помощью компьютеров Macintosh, фиксируя различные параметры, характеризующие действия спортсменов (положение, скорость, гибкость), уже моделируется в реальном масштабе времени их динамика, что позволяет интенсифицировать возможности спортсменов.

В западной печати Virtual Reality представляется как новая технология, способная усилить возможности человеческого мышления. Поэтому на ее разработку выделяются сотни миллионов долларов.

Проблематика "виртуальной реальности", как никакая другая сфера, тесно связана с результатами нейропсихолингвистических исследований, В этих направлениях российская наука всегда занимала передовые позиции. И.Павлов и А.Ухтомский, И.Бериташвили и Н.Бернштейн, Л.Выготский и Ф.Бассин (список легко можно продолжить) создали отличный фундамент. Математические модели еще в 50-60-х годах начали создавать И.Гельфанд, А.Ляпунов, М.Цетлин, С.Фомин. Это были пионерские работы, результаты которых использовались во всем мире.

 

 

Глава 8. БИОСФЕРА, НООСФЕРА И ЦИВИЛИЗАЦИЯ

 

В.И. Вернадский родился в Петербурге в 1863 году, всего через два года после отмены крепостного права в России, в семье профессора политической экономии, яркого представителя русской либеральной интеллигенции прошлого века. Через пять лет, семья Вернадских переехала в Харьков, где на формирование личности Вернадского повлиял его двоюродный дядя - Е.М.Короленко, офицер в отставке, увлекающийся научно-философскими изысканиями. Более всего его интересовали проблемы, связанные с жизнью каждого человека и человечества в целом. Вполне вероятно, что некоторые мысли Е.М.Короленко, некоторые из вопросов, поставленные им, сохранились в памяти Вернадского и осознанно или бессознательно повлияли на его научное творчество.

Петербургская классическая гимназия, где с третьего класса учился Вернадский, была одна из лучших в России. Здесь хорошо преподавались иностранные языки, история, философия. В дальнейшем Вернадский самостоятельно изучил несколько европейских языков. Он читал литературу, преимущественно научную, на пятнадцати языках, а некоторые свои статьи писал по-французски, по-английски и по-немецки. Интерес к истории и философии ученый сохранил на всю жизнь.

Затем Вернадский поступил на физико-математический факультет Петербургского университета, где среди профессоров находились светила русской науки: Менделеев, Бекетов, Сеченов, Бутлеров. Однако наибольшее влияние на Вернадского, несомненно, оказал Докучаев, преподававший в университете минералогию. Молодой ученый неоднократно принимал участие в экспедициях по изучению почв Нижегородской губернии под руководством Докучаева. Но сфера научных интересов Вернадского в то время не ограничивалась минералогией. Он занимался и достиг выдающихся результатов также в геологии, кристаллографии.

В то же время Вернадский искренне увлекся учением Толстого и разделял многие его сомнения. Однако Толстой не верил в то, что наука способна удовлетворить стремление человека найти "смысл жизни", примириться с неизбежностью смерти, обосновать высокие моральные принципы. Вряд ли подобные идеи были близки Вернадскому. В отличие от Толстого он всю свою жизнь сохранял веру в научное знание и стремился найти ответ на множество вопросов бытия на основе логического анализа фактов, достоверных сведений о мире и человеке.

В 1885 году Вернадский был оставлен хранителем Минералогического кабинета Московского университета. Работая на этом месте, ученый много ездит, работает в химических и кристаллографических лабораториях, совершает геологические экспедиции. В 1897 году Вернадский защищает докторскую диссертацию и становится профессором Московского университета. В 1906 году его избирают членом Государственного совета от Московского университета. Два года спустя он делается экстраординарным академиком. По инициативе и под председательством Вернадского в 1915 году создается комиссия по изучению естественных производительных сил России при Академии наук. В конце 1921 года Вернадский основал в Москве Радиевый институт и был назначен его директором. В 1926 году выходит его знаменитая работа "Биосфера", после чего он пишет массу исследований о природных водах, круговороте веществ и газах Земли, о космической пыли, геометрии проблеме времени в современной науке. Но главной для него остается тема биосферы - области жизни и геохимической деятельности живого вещества.

Дожив до глубокой старости, Вернадский скончался в Москве всего за несколько месяцев до победоносного завершения Великой Отечественной войны. Ему пришлось пережить три революции в России и две мировые войны. На его век выпали и не менее революционные открытия в науке.

Но самое важное: для Вернадского наука была средством познания природы. Он блестяще знал добрый десяток наук, но изучал природу, которая неизмеримо сложнее всех наук, вместе взятых. Он размышлял и над природными объектами, и над их взаимосвязями.

Как и многие естествоиспытатели, добившиеся выдающихся успехов в специальных областях, Вернадский пришел к своим философским построениям на склоне лет, видя в них естественное обобщение фундаментальных принципов, лежащих в основе мироздания. Но даже среди корифеев естествознания он выделяется не только новаторством и глубиной идей, но и их поразительной современностью.

И в центре этого новаторства - возрождение древней идеи о центральной роли человека, его разума во всей Вселенной. Значимость ее для нашей цивилизации долгое время недооценивалась. И главная причина этого, как ни парадоксально, состояла, по-видимому, в самих успехах классической науки, увенчавшихся созданием А.Эйнштейном в 1916 г. общей теории относительности,

Опьяненные невиданными достижениями, большинство ученых традиционно видели в человеке всего лишь талантливого созерцателя природы, способного раскрыть ее тайны и вдоволь удовлетворить жажду познания. А Вернадский пророчески увидел в человеке умелого творца природы, призванного, в конце концов, занять место у самого штурвала эволюции.

Вернадскому при всей его гениальности и невероятной работоспособности потребовались десятилетия, чтобы перебросить надежный мост над пропастью, отделяющей естествознание от истории, творимой самими людьми. И мост этот состоял в ключевой идее, что переход возникшей на Земле биосферы в ноосферу, то есть царство разума, не локальный эпизод "на задворках" бескрайней Вселенной, а закономерный и неизбежный этап развития материи, этап естественноисторический. "Мы только начинаем сознавать непреодолимую мощь свободной научной мысли, величайшей творческой силы Homo Sapiens, человеческой свободной личности, величайшего нам известного проявления ее космической силы, царство которой впереди", - писал Вернадский.

 




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 746; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.