Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геометрический метод рассмотрения движения плоской фигуры в ее плоскости




Теорема Шаля 1: Всякое непоступательное перемещение плоской фигуры в ее плоскости из одного положения в другое может быть представлено как сумма двух перемещений: поступательного вместе с произвольной точкой, выбранной в качестве полюса, и вращательногоотносительно этого полюса. При этом поступательное перемещение зависит от выбора полюса, а вращательное от него не зависит.

Под вращательным перемещением плоской фигуры относительно полюса понимается вращательное перемещение этой плоской фигуры вместе с НМС, сечением которой является эта плоская фигура, относительно оси, проходящей через полюс перпендикулярно плоской фигуре (или плоскости П0).

Доказательство: На рис. 1 изображены два положения плоской фигуры и отрезка ВD в моменты времени t1 и t2: соответственно В1D1 и В2D2.

Выберем в качестве полюса точку D. Отрезок В1D1 перемещаем поступательно (т.е. параллельно самому себе) в положение , а затем поворачиваем вокруг полюса на угол . Точка попадет в точку В2, так как длина отрезка ВD неизменна. Первая часть теоремы доказана.

Для доказательства второй части теоремы в качестве полюса выберем точку В. Отрезок В1D1 перемещаем поступательно (т.е. параллельно самому себе) в положение , а затем поворачиваем вокруг полюса на угол . На рис. 1 видно, что поступательные составляющие перемещений отрезка ВD различны при выборе в качестве полюсов В и D (D1D2 В1В2), а вращательные составляющие равны, так как , как накрестлежащие углы при двух параллельных и одной секущей.

Рис. 2

Поскольку поступательная часть перемещения плоской фигуры с изменением полюса меняется, оказывается возможным выбрать полюс так, чтобы эта часть перемещения вообще отсутствовала.

Теорема Шаля 2: Всякое непоступательное перемещение плоской фигуры в ее плоскости из одного положения в другое может быть представлено как конечный поворот этой фигуры относительно определенного центра вращения.

Конечный поворот плоской фигуры относительно определенного центра вращения понимается в том же смысле, что и вращательное перемещение этой плоской фигуры в теореме Шаля 1.

Доказательство: На рис. 3 изображены два положения отрезка ВD в моменты времени t1 и t2: соответственно В1D1 и В2D2.

Соединим точки В1 и D1 соответственно с точками В2 и D2 и из середин отрезков В1В2 и D1D2 восстановим перпендикуляры. Точка пересечения этих перпендикуляров О — центр вращения (как будет доказано ниже).

, так как и , как наклонные, равноудаленные от перпендикуляра.

 

Из равенства треугольников следует, что .

Рис. 3

После поворота на относительно точки О отрезок ОВ1 совпадает с отрезком ОВ2, одновременно ОD1 отрезок должен совпасть с отрезком ОD2, так как

, т. е.

,

и, как следствие, отрезок В1D1 совпадет с отрезком В2D2.

Таким образом, перемещение отрезка ВD из положения В1D1 в положение В2D2 представлено конечным поворотом относительно центра О.

Из доказанных теорем следует, что всякое непоступательное перемещение плоской фигуры в ее плоскости из одного положения в другое может быть представлено двумя способами: либо суммой поступательного и вращательного движений либо одним вращательным движением.

 




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 497; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.