Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Краткие методические указания к решению задачи 2




Расчет показателей по индивидуальным данным проводится по каждому признаку – Х1, Х2, Х3 и Х4 в следующей последовательности:

1. Определяются итоговые обобщающие показатели, т. е. производится расчет сумм для каждого из признаков в отдельности

 

, (1)

 

где i = 1…n; n – число единиц наблюдения.

2. Рассчитываются простые средние арифметические величины

, (2)

 

где j = 1…; m – число признаков; – простая среднеарифметическая величина j-го признака; – индивидуальные значения j-го признака i-й единицы наблюдения.

3. Рассчитываются показатели размаха вариации

 

, (3)

 

где – максимальное значение j-го признака; – минимальное значение j-го признака.

4. Рассчитываются средние линейные отклонения

. (4)

5. Рассчитываются дисперсии

. (5)

6. Рассчитайте среднеквадратические отклонения

, (6)

где i = 1…n, j = 1…m.

7. Определяются в относительных величинах коэффициенты вариации

. (7)

При проведении расчетов по вышеприведенным формулам целесообразно использовать вспомогательные расчеты таблицы, в которых представляется последовательность арифметических действий и все промежуточные результаты.

Например, при расчете средних величин, средних линейных отклонений и дисперсий для каждого признака (по условиям задачи) промежуточные таблицы могут быть представлены следующим образом:

 

Номер п/п Х (1) (2) (3) (4)
         
         
         
       
N        
Итого

 

Полученные в результате расчетов обобщающие статистические характеристики оформляются в виде выходных статистических таблиц.

Ниже для иллюстрации нами приводятся результаты расчетов этих характеристик отдельно для количественных признаков – Х1, Х2, и Х3 (непрерывные признаки – Х1 и Х2 и дискретный признак Х3) и для альтернативного признака Х4, выполненные по данным информационной таблицы базового варианта (табл. 1).

Основные статистические характеристики количественных признаков – Х1, Х2, Х3 представлены в табл. 3.

Таблица 3

 

номер п/п Показатели Х1, руб. Х2, руб. Х3, руб.
  Итоговые обобщающие показатели      
  Средние величины 7465,83 3663,00 3,73
  Размах вариации      
  Средние линейные отклонения 1732,2 747,87 0,93
  Дисперсии 4403140,14 834847,67 1,26
  Средние квадратические отклонения 2098,37 913,70 1,12
  Коэффициент вариаций, % 28,11 24,94 30,09

 

Основные статистические характеристики альтернативного признака – Х4 (табл. 4).

Таблица 4

 

номер п/п Показатели Х4
  Сумма единиц, обладающая данным признаком  
  Доля единиц, обладающая данным признаком 0,50
  Доля единиц, не обладающая данным признаком = (1 – p) 0,50
  Дисперсия альтернативного признака pq 0,25
  Среднеквадратическое отклонение альтернативного признака 0,25

 

Представленные выходные таблицы в этой и всех последующих задачах носят рекомендательный характер, так как возможны и другие формы представления данных.

В целях упрощения нумерация формул, таблиц, графиков дается по каждой задаче в отдельности.

Задача 3

По данным информационной таблицы вашего варианта произведите группировку индивидуальных данных, приняв за основу группировки количественный непрерывный признак Х1. Группы образуйте с равными и неравными интервалами в следующей последовательности.

1. Образуйте группы с равными интервалами. По каждой группе определите:

а) число единиц наблюдения в абсолютных и относительных величинах (процент к итогу);

б) групповые обозначающие итоговые показатели признаков – Х1, Х2, Х3, Х4 в абсолютных и относительных величинах (процент к итогу);

в) групповые средние величины и групповые частные дисперсии признаков – Х1, Х2, Х3, Х4.

2. Образуйте группы с неравными (равнонаправленными) интервалами – 10 групп по 10 % единиц наблюдения в каждом интервале и 5 групп по
20 % единиц наблюдения также в каждом интервале. По каждой группе для признаков Х1, Х2, Х3, Х4 (для названных вариантов) рассчитайте групповые итоговые значения названных признаков в абсолютных и относительных величинах (процент к итогу).

3. Образуйте 5 групп с интервалами, меняющимися по правилу арифметической прогрессии. Рассчитайте абсолютные и относительные показатели плотности распределения. Все полученные результаты (пункты 1, 2, 3) представьте в статистических таблицах.




Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 421; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.