Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Частота вращения ротора асинхронного двигателя




Регулирование частоты вращения асинхронных двигателей

n2 =n1(1 - s) = (f160/ p)(l - s). (15.2)

Из этого выражения следует, что частоту вращения ротора асинхронного двигателя можно регулировать изменением какой - либо из трех величин: скольжения s, частоты тока в обмотке ста­тора f 1 или числа полюсов в обмотке статора 2р.

Регулирование частоты вращения изменением скольжения sвозможно тремя способами: изменением подводимого к обмотке статора напряжения, нарушением симметрии этого напряжения и изменением активного сопротивления обмотки ротора.

Регулировка частоты вращения изменением скольжения про­исходит только в нагруженном двигателе. В режиме холостого хода скольжение, а следовательно, и частота вращения остаются практически неизменными.

Регулирование частоты вращения изменением подводи­мого напряжения. Возможность этого способа регулирования подтверждается графиками М = f (s), построенными для разных значений U1 (см. рис. 13.5). При неизменной нагрузке на валу дви­гателя увеличение подводимого к двигателю напряжения вызыва­ет рост частоты вращения. Однако диапазон регулирования часто­ты вращения получается небольшим, что объясняется узкой зоной устойчивой работы двигателя, ограниченным значением критиче­ского скольжения и недопустимостью значительного превышения номинального значения напряжения. Последнее объясняется тем, что с превышением номинального напряжения возникает опас­ность чрезмерного перегрева двигателя, вызванного резким увели­чением электрических и магнитных потерь. В то же время с уменьшением напряжения U1двигатель утрачивает перегрузочную способность, которая, как известно, пропорциональна квадрату напряжения сети (см. § 13.2).

Подводимое к двигателю напряжение изменяют либо регули­ровочным автотрансформатором, либо реакторами, включаемыми в разрыв линейных проводов.

Узкий диапазон регулирования и неэкономичность (необхо­димость в дополнительных устройствах) ограничивают область применения этого способа регулирования частоты вращения.

Регулирование частоты вращения нарушением симметрии подводимого напряжения. При нарушении симметрии подводи­мой к двигателю трехфазной системы напряжения вращающееся поле статора становится эллиптическим (см. § 9.4). При этом поле приобретает обратную составляющую (встречное поле), которая создает момент Мобр, направленный встречно вращающему момен­ту Мпр. В итоге результирующий электромагнитный момент двига­теля уменьшается (М = Мпр - Мобр).

Механические характеристики двигателя при этом способе регу­лирования располагаются в зоне между характеристикой при симмет­ричном напряжении (рис. 15.10, а, кривая 1) и характеристикой при однофазном питании дви­гателя (кривая 2) — пределом несимметрии трехфазного напряжения.

Для регулировки не­симметрии подводимого напряжения можно в цепь одной из фаз включить однофазный регулировоч­ный автотрансформатор (AT) (рис. 15.10, б). При уменьшении напряжения па выходе AT несиммет­рия увеличивается и частота вращения ротора уменьшается. Недостатками этого способа регулирования являются узкая зона

 

 

Рис. 15.10. Механические характеристики (а) и схема включения (б) асинхронного двигателя при регулировании частоты вращения изменением симметрии трехфаз­ной системы

 

регулирова­ния и уменьшение КПД двигателя по мере увеличения несимметрии напряжения. Обычно этот способ регулирования частоты вращения применяют лишь в двигателях малой мощности.

Регулирование частоты вращения изменением активного сопротивления в цепи ротора. Этот способ регулирования частоты вращения возможен лишь в двигателях с фазным ротором. Ме­ханические характеристики асинхронного двигателя, построенные для различных значений активного сопротивления цепи ротора (см. рис. 13.6), показывают, что с увеличением активного сопро­тивления ротора возрастает скольжение, соответствующее задан­ному нагрузочному моменту. Частота вращения двигателя при этом уменьшается. Зависимость скольжения (частоты вращения) от активного сопротивления цепи ротора выражается формулой, полученной преобразованием (13.13):

s = m1I/22 r'2/ (ω1 М). (15.3)

Практически изменение активного сопротивления цепи ротора достигается включением в цепь ротора регулировочного реостата (РР), подобного пусковому реостату (ПР) (см. рис. 15.2), но рассчитанного на длительный режим работы. Электрические потери в роторе пропорциональны скольжению (Рэ2 = sPэм), поэтому умень­шение частоты вращения (увеличение скольжения) сопровождается ростом электрических потерь в цепи ротора и снижением КПД двигателя. Так, если при неизменном нагрузочном моменте на валу двигателя увеличить скольжение от 0,02 до 0,5, что соответствует уменьшению частоты вращения примерно вдвое, то потери в цепи ротора составят почти половину электромагнитной мощно­сти двигателя. Это свидетельствует о неэкономичности рассмат­риваемого способа регулирования. К тому же необходимо иметь в виду, что рост потерь в роторе сопровождается ухудшением усло­вий вентиляции из-за снижения частоты вращения, что приводит к перегреву двигателя (см. § 31.1).

Рассматриваемый способ регулирования имеет еще и тот недостаток, что участок меха­нической характеристики, со­ответствующий устойчивой ра­боте двигателя, при введении в цепь ротора добавочного со­противления становится более пологим и колебания нагрузоч­ного момента на валу двигате­ля сопровождаются значитель­ными изменениями частоты вращения ротора. Это иллюст­рирует рис. 15.11, на котором видно, что если нагрузочный момент двигателя изменится на ΔМст = М/ст – М//ст, то измене­ние частоты

 

 

 

Рис. 15.11. Влияние сопротивления цепи ротора на

колебания частоты вращения при изменении нагрузки

 

вращения при выведенном регулировочном реостате (rд' = 0) составит Δn2I, а при введенном реостате - Δn2II. В послед­нем случае изменение частоты вращения значительно больше.

Но несмотря на указанные недостатки, рассмотренный способ ре­гулирования частоты вращения широко применяется в асинхронных двигателях с фазным ротором. В зависимости от конструкции регули­ровочного реостата этот способ регулирования частоты вращения может быть плавным (при плавном изменении сопротивления РР) или ступенчатым (при ступенчатом изменении сопротивления РР).

Способ обеспечивает регулирование частоты вращения в ши­роком диапазоне, но только вниз от синхронной частоты враще­ния. Вместе с тем он обеспечивает двигателю улучшенные пуско­вые свойства (см. § 15.1).

Регулирование частоты вращения изменением частоты тока в статоре. Этот способ регулирования (частотное регулирование) ос­нован на изменении синхронной частоты вращения n1 = f 1 60/ р.

Для осуществления этого способа регулирования необходим источник питания двигателя переменным током с регулируемой частотой. В качестве таких источников могут применяться элек­тромашинные, ионные или полупроводниковые преобразователи частоты (ПЧ). Чтобы регулировать частоту вращения, достаточно изменить частоту тока f 1. Но с изменением частоты f 1 = ω1p/ (2π) будет изменяться и максимальный момент [см. (13.18)]. Поэтому для сохранения неизменными перегрузочной способности, коэффициента мощности и КПД двигателя на требуемом уровне необходимо одно­временно с изменением частоты f 1 изменять и напряжение питания U1. Характер одновременного изменения f1 и U1 зависит от закона изме­нения момента нагрузки и определяется уравнением

U/1 /U1 = (f1 //f1) (15.4)

 

где U1 и М — напряжение и момент при частоте f1; U'1 и М' -напряжение и момент при частоте f '1.

Если частота вращения двигателя регулируется при условии постоянства момента нагрузки (М = М' = const), то подводимое к двигателю напряжение необходимо изменять пропорционально изменению частоты тока:

U'1 = U1 f '1/f1 (15.5)

При этом мощность двигателя увеличивается пропорциональ­но нарастанию частоты вращения. Если же регулирование произ­водится при условии постоянства мощности двигателя (Рэм = Мω1 = const), то подводимое напряжение следует изменять в соответствии с законом

U'1 = U1 . (15.6)

Частотное регулирование двигателей позволяет плавно изме­нять частоту вращения в широком диапазоне (до 12:1). Однако источники питания с регулируемой частотой тока удорожают установку. Поэтому частотное регулирование до последнего времени применялось в основном для одновременного регулирования группы двигателей, работающих в одинаковых условиях (напри­мер, рольганговых двигателей). Но благодаря развитию силовой полупроводниковой техники в последние годы созданы устройства частотного регулирования, технико-экономические показатели которых оправдывают их индивидуальное применение для регули­рования частоты вращения одиночных двигателей.




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 9815; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.