КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Синхронный двигатель и синхронный компенсатор
§22.1. Принцип действия синхронного двигателя В соответствии с принципом обратимости электрических машин синхронная машина может работать не только в режиме генератора, но и в режиме двигателя, т. е. потреблять из сети электрическую энергию и преобразовывать ее в механическую. Для объяснения принципа работы синхронного двигателя представим себе синхронный генератор, включенный на параллельную работу в сеть большой мощности. Допустим, приводной двигатель вращает ротор генератора против часовой стрелки с угловой скоростью . При этом нагрузка генератора такова, что продольная ось полюсов ротора смещена относительно оси вращающегося поля на угол в направлении вращения ротора (рис. 22.1, справа). Вращающий момент приводного двигателя уравновешивается суммой электромагнитного момента генератора М' и момента х.х. М0 ().На угловой характеристике этому режиму генератора соответствует точка Г. Если уменьшать вращающий момент , то нагрузка генератора начнет также уменьшаться, при этом будет уменьшаться угол , а следовательно, и ток статора ). В итоге снизится величина электромагнитного момента М' и при вращающем моменте угол , т. е. генератор будет работать в режиме х. х. ( = 0) и ЭДС генератора Е0 окажется в противофазе с напряжением сети . Этому режиму на угловой характеристике соответствует точка пересечения осей координат (точка О на рис. 22.1). Если же вал синхронной машины отсоединить от приводного двигателя и создать на этом валу тормозной момент, т.е. момент нагрузки М2, направленный встречно вращению ротора машины, то произойдет смещение вектора ЭДС на угол — относительно его положения в режиме х. х. в сторону отставания (рис. 22.1, слева). При этом в цепи обмотки статора появится результирующая ЭДС , которая создаст в обмотке статора ток , отстающий по фазе от ЭДС на угол 90° (предполагается ) и отстающий по фазе от напряжения сети е на угол (в генераторном режиме ток , отстает по фазе от ЭДС Е0 на угол ).
Рис. 22.1. Переход синхронной машины из генераторного режима в двигательный
Рис. 22.2. Угловая характеристика синхронного двигателя Ток создает магнитное поле, вращающееся синхронно с ротором, ось которого смещена относительно продольной оси полюсов ротора на угол — . Допустим, работа двигателя происходит в режиме точки Д на угловой характеристике (рис. слева), что соответствует углу — . Возникшие при этом тангенциальные составляющие сил магнитного взаимодействия полюсов создадут на роторе двигателя электромагнитный момент М", направленный согласно с вращающим магнитным полем и приводящий ротор во вращение с синхронной частотой . При этом синхронная машина будет потреблять из сети электрическую энергию и преобразовывать ее в механическую энергию вращения. Вращающий электромагнитный момент М" преодолевает момент х. х. и создает на валу двигателя полезный момент , под действием которого приводится во вращение исполнительный механизм: Все значения момента на угловой характеристике синхронного двигателя откладываются в отрицательном направлении оси ординат, так как при переходе синхронной машины из генераторного режима в двигательный электромагнитный момент меняет свое направление. Также отрицательной становится мощность синхронного двигателя, которая поступает из сети в машину, а не из машины в сеть, как это происходит в генераторном режиме. Оперирование с отрицательными значениями мощностей и моментов крайне неудобно, поэтому при рассмотрении синхронных двигателей условно будем принимать моменты и мощности положительными, помня при этом изложенное ранее о направлении этих параметров. Электромагнитная мощность синхронного двигателя определяется выражениями (2 1.7) и (2 1.8), а электромагнитный момент - (2 1.9) и (2 1.10). Угловые характеристики электромагнитного момента и его составляющих и представлены на рис. 22.2. Эти характеристики отличаются от угловых характеристик генератора (см. рис. 21.5) лишь тем, что располагаются в третьем квадранте осей координат, т. е. определяются отрицательными значениями углов и моментов и а также момента при . Таким образом, в общем виде угловая характеристика синхронной машины представляет собой две полуволны результирующего момента М: положительную, соответствующую генераторному режиму работы (см. рис. 21.5), и отрицательную, соответствующую двигательному режиму работы (рис. 22.2). Переход машины из одного режима работы в другой происходит при . Устойчивая работа синхронного двигателя соответствует участку угловой характеристики (рис. 22.2) при . Отношение максимального электромагнитного момента к номинальному [см. (21.16)] определяет перегрузочную способность синхронного двигателя . Обычно перегрузочная способность синхронных двигателей , что при номинальной нагрузке двигателя соответствует эл. град. Ротор синхронного двигателя может вращаться только с синхронной частотой . Чтобы убедиться в этом, достаточно предположить, что ротор двигателя начнет вращаться с частотой . В какой-то момент времени намагниченные полюсы ротора расположатся против одноименных полюсов вращающегося магнитного поля статора и тогда нарушится магнитная связь между намагниченными полюсами ротора и полюсами вращающегося поля статора, так как их одноименные полюсы будут взаимно отталкиваться и ротор, перестав испытывать устойчивое действие вращающего электромагнитного момента, остановится. Вращение ротора синхронных двигателей только с синхронной частотой составляет характерную особенность этих двигателей и часто определяет область их применения (например, для привода устройств, требующих стабильной частоты вращения). При изменениях нагрузки на валу синхронного двигателя меняется угол . При этом ротор вследствие инерции вращающихся масс агрегата не сразу занимает положения, соответствующие новой нагрузке, а некоторое время совершает колебательные движения. Таким образом, в синхронном двигателе, так же как и в генераторе, имеют место колебания (физическая сущность этого явления изложена в § 21.4). По своей конструкции синхронные двигатели в принципе не отличаются от синхронных генераторов, но все же имеют некоторые особенности. Их изготовляют преимущественно явнополюсными с полюсов; воздушный зазор делают меньшим, чем в генераторах такой же мощности, что способствует улучшению ряда параметров двигателя, в частности уменьшению пускового тока; демпферную (успокоительную) обмотку выполняют стержнями большего сечения, так как при пуске двигателя она является пусковой обмоткой (см. § 22.2); ширина полюсного наконечника достигает вместо в генераторах. Поэтому, несмотря на свойство обратимости, синхронные машины, выпускаемые промышленностью, имеют обычно целевое назначение — либо это синхронные генераторы, либо синхронные двигатели.
Дата добавления: 2014-12-27; Просмотров: 1284; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |