КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Анализ сетей Петри
Пример сети Петри для системы обнаружения и устранения неисправностей в технической системе Пример 2. Требуется описать с помощью сети Петри процессы возникновения и устранения неисправностей в некоторой технической системе, состоящей из М однотипных блоков; в запасе имеется один исправный блок; известны статистические данные об интенсивностях возникновения отказов и длительностях таких операций, как поиск неисправностей, замена и ремонт отказавшего блока. На рис. 5.17 представлена соответствующая сеть Петри. При числе маркеров в позиции, равном М, можно не ставить М точек, а записать в позиции значение М. В данном примере значение М в позиции p2 соответствует числу имеющихся в системе блоков. Переходы отображают следующие события: t1 – отказ блока, t2 – обнаружение неисправного блока, t3 – замена неисправного блока, t4 – окончание ремонта. При наличии маркера в позиции p2 переход t1 срабатывает, но с задержкой, равной вычисленному случайному значению моделируемого отрезка времени между отказами. После выхода маркера из t1 он попадает через p1 в t2, если имеется маркер в позиции p6. Это означает, что обслуживающая систему бригада специалистов свободна и может приступать к поискувозникшей неисправности. Рис. 5.17. Сеть Петри к примеру 2
В переходе t2 маркер задерживается на время, равное случайному значению длительности поиска неисправности. Далее маркер оказывается в р3, и, если имеется запасной блок (маркер в р4), то запускается переход t3, из которого маркеры выйдут в p2, p5 и p6, через отрезок времени, требуемый для замены блока. После этого в t4 имитируется восстановление неисправного блока.
Анализ сложных систем на базе сетей Петри можно выполнять посредством имитационного моделирования СМО, представленных моделями сетей Петри. При этом задают входные потоки заявок и определяют соответствующую реакцию системы. Выходные параметры СМО рассчитывают путем обработки накопленного при моделировании статистического материала. Возможен и другой подход к использованию сетей Петри для анализа объектов, исследуемых на системном уровне. Он не связан с имитацией процессов и основан на исследовании таких свойств сетей Петри, как ограниченность, безопасность, сохраняемость, достижимость, живость. Ограниченность (или К-ограниченность) имеет место, если число меток в любой позиции сети не может превысить значения К. При проектировании автоматизированных систем определение К позволяет обоснованно выбирать емкости накопителей. Возможность неограниченного роста числа меток свидетельствует об опасности неограниченного роста длин очередей. Безопасность— частный случай ограниченности. Конкретно безопасность соответствует 1-ограниченности. Если для некоторой позиции установлено, что она безопасна, то ее можно представлять одним триггером. Сохраняемость характеризуется постоянством загрузки ресурсов, т.е.
где Ni – число маркеров в i- й позиции; Ai – весовой коэффициент. ДостижимостьМk → Мj характеризуется возможностью достижения маркировки Мj из состояния сети, характеризуемого маркировкой Мk. Живость сети Петри определяется возможностью срабатывания любого перехода при функционировании моделируемого объекта. Отсутствие живости означает либо избыточность аппаратуры в проектируемой системе, либо свидетельствует о возможности возникновения зацикливаний, тупиков, блокировок. В основе исследования перечисленных свойств сетей Петри лежит анализ достижимости. Один из методов анализа достижимости любой маркировки из состояния М0 – построение графа достижимости. Начальная вершина графа отображает М0, а остальные вершины соответствуют маркировкам. Дуга из Мi, в Мj означает событие Мi → Мj и соответствует срабатыванию перехода t. В сложных сетях граф может содержать чрезмерно большое число вершин и дуг. Однако при построении графа можно не отображать все вершины, так как многие из них являются дублями (действительно, от маркировки Мk всегда порождается один и тот же подграф вне зависимости от того, из какого состояния система пришла в Мk). На рис. 5.18 показана сеть Петри к примеру с одной рабочей станцией и N пользователями. Граф достижимости для данной сети показана на рис. 5.19.
Рис. 5.18. Сеть Петри к примеру 1
На рисунке 5.19 вершины графа изображены в виде маркировок, дуги помечены срабатывающими переходами. Данная сеть явно обладает свойством живости, так как срабатывают все переходы, а тупики отсутствуют.
Рис. 5.19. Граф достижимости сети Петри к примеру 1
Пример 3. Сеть Петри для двухпроцессорной вычислительной системы с общей памятью и ее граф достижимости представлены на рис. 5.20. Сеть является живой: все разметки достижимы.
Рис. 5.20. Сеть Петри и ее граф достижимости к примеру 2 Вопросы к разделу 5.2
Дата добавления: 2014-12-27; Просмотров: 1388; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |