Замкнутый колебательный контур
Замкнутый колебательный контур есть электрическая цепь, состоящая из конденсатора и катушки индуктивности с малым активным сопротивлением.
Поставим переключатель в левое положение, конденсатор зарядится. Теперь поставим в правое положение, конденсатор мгновенно разрядится.
А теперь включим в цепь катушку индуктивности.
Если зарядить конденсатор от батареи, поставив переключатель SW в левое положение, затем перевести переключатель в правое положение, то конденсатор начнет разряжаться через катушку и по цепи колебательного контура потечет ток. Так как катушка обладает индуктивным сопротивлением, ток в цепи нарастает постепенно. Вокруг катушки образуется магнитное поле, которое усиливается по мере увеличения тока. Когда конденсатор полностью разрядится, магнитное поле и ток в катушке достигнут наибольшего значения (момент t1 на рисуке).
За счет энергии, накопленной в магнитном поле катушки, ток будет продолжать течь в том же направлении, постепенно уменьшаясь по величине. При этом происходит перезарядка конденсатора, и нижняя пластина приобретает положительное напряжение.
В некоторый момент t2 вся энергия магнитного поля катушки переходит в энергию электрического поля конденсатора, причем ток в цепи уменьшается до нуля. Но в это же время конденсатор снова начнет разряжаться, и в контуре опять потечет ток, но уже в обратном направлении: от нижней пластины конденсатора через катушку к верхней пластине.
В момент полной разрядки конденсатора t3 он возрастет до максимального значения, а энергия электрического поля конденсатора полностью превратится в энергию магнитного поля катушки. После этого начнется новая зарядка конденсатора, сопровождающаяся уменьшением тока в цепи до нуля. Описанный цикл составляет одно полное колебание.
После этого колебательный процесс повторяется. Таким образом, в цепи, состоящей из катушки индуктивности L и конденсатора С, происходят повторяющиеся через определенные промежутки времени изменения токов и напряжений. Эти изменения вызваны процессами перехода энергии электрического поля заряженного конденсатора в энергию магнитного поля катушки и обратного перехода энергии магнитного поля катушки в энергию электрического поля конденсатора. Следовательно, конденсатор является накопителем энергии электрического поля, а катушка индуктивности — накопителем энергии магнитного поля, и колебательный процесс, то есть периодические изменения тока и напряжения в контуре, является результатом обмена энергией между катушкой и конденсатором. Чем больше емкость конденсатора, входящего в колебательный контур, тем больший заряд он может накопить и тем длительнее его перезарядка. С другой стороны, увеличение числа витков катушки и ее диаметра вызывает рост индуктивности колебательного контура и усиление накапливаемого в ней магнитного поля. Сильное магнитное поле способно долго поддерживать ток перезарядки конденсатора. Таким образом, увеличение емкости конденсатора или индуктивности катушки, входящих в параллельный колебательный контур, приводит к увеличению периода полного колебания электрического тока в этом контуре, или, иными словами, уменьшению частоты электрических колебаний в контуре. Следовательно, в колебательных контурах с различными емкостями конденсаторов и индуктивностями катушек будут создаваться электрические колебания с разной частотой. Такая частота называется собственной частотой колебательного контура и определяется по формуле:
Если значение емкости С подставлять в эту формулу в фарадах, а индуктивности L в генри, полученная резонансная частота будет выражаться в герцах. Электрические колебания в контуре, происходящие только за счет обмена энергиями между катушкой индуктивности и конденсатором, называются свободными. Если бы потери энергии при обмене не происходило, то свободные электрические колебания в контуре длились бы бесконечно долго. Однако катушка индуктивности кроме индуктивного сопротивления
содержит и активное сопротивление R, которым обладает провод ее обмотки. Для преодоления этого сопротивления протекающий в контуре ток расходует часть энергии, выделяющейся в виде тепла. Конденсатор также не является идеальным, поскольку сопротивление диэлектрика, разделяющего его обкладки, не равно бесконечности. Поэтому ток между пластинами конденсатора протекает не только по проводникам внешней цепи, но и часть его «просачивается» через разделяющий обкладки диэлектрик (этот ток называют током утечки конденсатора), на что тоже тратится некоторая энергия. Происходит потеря энергии и в проводниках, соединяющих катушку индуктивности и конденсатор. Поэтому с каждым новым циклом колебаний, или периодом, энергия в контуре будет уменьшаться. Это приводит к уменьшению амплитуды колебаний или их «затуханию» с течением времени.
Затухание колебаний будет происходить тем быстрее, чем больше активное сопротивление в цепи колебательного контура.
|