КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Совершенная конъюнктивная нормальная форма
Конъюнктивная нормальная форма и
Элементарной дизъюнкцией п переменных называется дизъюнкция переменных или их отрицаний. Конъюнктивной нормальной формой (КНФ) формулы А называется равносильная ей формула, представляющая собой конъюнкцию элементарных дизъюнкций. Для любой формулы алгебры логики путем равносильных преобразований можно получить ее КНФ, причем не единственную. Например, для формулы А = Ø (х Ú у)º х Ù у имеем: А = (Ø (х Ú у) ® х Ù у) Ù (х Ù у ® Ø (х Ú у)) = = (х Ú у Ú х Ù у) Ù (Ø (х Ù у) Ú Ø (х Ú у)) = = (х Ú х Ú у) Ù (х Ú у Ú у) Ù (Ø х Ú Ø у Ú Ø х) Ù (Ø х Ú Ø у Ú Ø у), то есть КНФ А = (х Ú х Ú у) Ù (х Ú у Ú у) Ù (Ø х Ú Ø у Ú Ø х) Ù (Ø х Ú Ø у Ú Ø у). Но так как х Ú х = х, у Ú у = у,Ø х Ú Ø х = Ø х,Ø у Ú Ø у = Ø у, то КНФ A = (х Ú у) Ù (х Ú у) Ù (Ø х Ú Ø у) Ù (Ø х Ú Ø у). А так как (х Ú у) Ù (х Ú у) = х Ú у,(Ø х Ú Ø у) Ù (Ø х Ú Ø у) = (Ø х Ú Ø у), то КНФ A = (х Ú у) Ù (Ø х Ú Ø у). КНФ А называется совершенной конъюнктивной нормальной формой формулы А (СКНФ А), если для нее выполнены условия:
Можно доказать, что каждая не тождественно истинная формула имеет единственную СКНФ. Один из способов получения СКНФ состоит в использовании таблицы истинности для формулы Ø А. Действительно, получив с помощью таблицы истинности СДНФ Ø А, мы получим СКНФ А,взяв отрицание Ø (СДНФ Ø А), то есть СКНФ А = Ø (СДНФ Ø А). Другой способ получения СКНФ, использующий равносильные преобразования, состоит в следующем:
Ясно, что после описанной процедуры будет получена СКНФ А. Например, для формулы А = x Ú y Ù (x Ú Ø y)КНФ А = x Ú (y Ù (x Ú Ø y)) = (x Ú y) Ù (x Ú x Ú Ø y). Так как обе элементарные дизъюнкции содержат все переменные (x и y), то первое и второе условие СКНФ выполнены. Элементарная дизъюнкция x Ú x Ú Ø y содержит переменную х дважды, но x Ú x = x, поэтому КНФ А = (x Ú y) Ù (x Ú Ø y); причем, ни одна из элементарных дизъюнкций не содержит переменную и ее отрицание. Значит, все условия СКНФ выполнены, и, следовательно, СКНФ А = (x Ú y) Ù (x Ú Ø y).
Дата добавления: 2015-04-24; Просмотров: 518; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |