Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Статистические оценки параметров распределения




При обработке опытных данных вид функции (закона) распределения часто заранее известен, и требуется найти некоторые параметры, от которых он зависит. Например, если закон распределения нормальный, то необходимо оценить два параметра: математическое ожидание и среднее квадратическое отклонение. Если закон распределения показательный, то необходимо оценить значение . Об этом будет сказано ниже.

Обычно в распоряжении исследователя имеются лишь данные выборки .

Для оценки математического ожидания нормального распределения используют среднее арифметическое наблюдаемых значений.

Определение. Генеральной средней называют среднее арифметическое значений признака генеральной совокупности

,

где - частоты, . Ясно, что .

Определение. Выборочной средней называют среднее арифметическое значений признака выборочной совокупности

,

где - частоты, .

Замечание. Выборочная средняя может изменятся от выборки к выборке. Т.е. выборочную среднюю можно рассматривать как случайную величину, следовательно, можно говорить о распределениях (теоретическом и эмпирическом) выборочной средней и о числовых характеристиках этого распределения. В частности о математическом ожидании и дисперсии.

Ясно, что математическое ожидание есть , т.е. .

Определение. Генеральной дисперсией называют

.

- генеральное среднее квадратическое отклонение.

Пример: Задана генеральная совокупность

xi 2 4 5 6
ni 8 9 10 3

 

,

.

Определение: Выборочной дисперсией называют

.

- выборочное среднее квадратическое отклонение.

Пусть из генеральной совокупности извлечена повторная выборка объема n.

-значение признака

- частоты,

причем .

Требуется по данным выборки оценить неизвестную дисперсию .

Известно, что если в качестве оценки генеральной дисперсии принять выборочную дисперсию, то эта оценка будет давать заниженное значение генеральной дисперсии, т.к. , а хотелось бы, чтобы .

Поэтому выборочную дисперсию исправляют следующим образом

.

При этом

.

Эти оценки дисперсии называют смещенной и несмещенной соответственно.

Для оценки среднего квадратического отклонения генеральной совокупности используют “исправленное” выборочное среднее квадратическое отклонение:

.

Замечание. Сравнивая формулы и видим, что они отличаются лишь знаменателями.
Очевидно, что при увеличении n и отличаются все меньше. На практике используют исправленную дисперсию, если n<30.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1802; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.