КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вопрос 3: отображения и их свойства
Определение 3.1. Назовём бинарное отношение функциональным, если для каждого сечение содержит не более одного элемента. Определение 3.2. Если отношение , симметричное к отношению , также является функциональным, то отношение называется взаимно однозначным. Определение 3.3. Если для каждого сечение содержит ровно один элемент, то функциональное отношение всюду определено. С функциональным отношением непосредственно связано понятие отображения. Определение 3.4. Отображение, обозначим его , сопоставляет каждому элементу, называемому аргументом отображения, для которого сечение - непустое множество, единственный элемент подмножества множества . Этот элемент называется образом элемента при отображении . Множество тех элементов , для которых существует , называется областью определения отображения . Определение 3.5. Если отображение определено на всём множестве , то говорят, что задано отображение в . Определение 3.6. Множество образов элементов при отображении называется образом отображения. Если , то образ определяется, как множество образов элементов . Определение 3.7. Если образ совпадает со всем множеством , то говорят, что задано отображение на , или что - сюръективное отображение, или сюръекция. (При этом требование всюду определённости не является обязательным). Определение 3.8. Если , то обозначает прообраз множества , т.е. множество тех элементов , для которых . Отметим очевидные свойства образа и прообраза: . Определение 3.9. Если отношение является взаимно однозначным, то отображение, соответствующее , называется обратным к и обозначается . Если при этом отношение всюду определено, то называется инъективным отображением, или инъекцией. Если, кроме того, отображение ещё и сюръективно, то оно называется биективным или биекцией. Отметим, что выше мы использовали обозначение прообраза и в случаях, когда обратное к отображение не существует. Если же обратное отображение существует, то прообраз можно рассматривать, как образ множества при отображении . Наиболее часто встречающимся функциональным отношением является обычная функция , определённая на некотором подмножестве числовой прямой, значения которой образуют множество . Действительно, эту функциональную зависимость можно трактовать, как задание подмножества в множестве , в которое входят те пары , для которых выполнено равенство . Изображение этого множества пар на плоскости носит название графика функции.
Дата добавления: 2015-04-24; Просмотров: 482; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |