Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Логистическая регрессия




 

При изучении линейной регрессии мы исследуем модели вида:

 

Y =a + b1*x1 + b2*x2 + …+bq * xq + e.

 

Здесь зависимая переменная Y является непрерывной, и мы определяем набор независимых переменных xi и коэффициенты при них bi, которые позволили бы нам предсказывать среднее значение Y с учетом наблюдаемой ее изменчивости.

Во многих ситуациях, однако, Y не является непрерывной величиной, а принимает всего два возможных значения. Обычно единицей в этом случае представляеют осуществления какого-либо события (успех), а нулем - отсутствие его реализации (неуспех).

Среднее значение Y - обозначенное через p, есть доля случаев, в которых Y принимает значение 1. Математически это можно записать как:

p = P(Y=1) или,

p = P("Успех")

В этом случае нам хотелось бы уметь оценивать величину p и определять факторы (независимые переменные xi (непрерывные), которые влияют на переменную Y.

 

Вероятно, первой попыткой было бы опробование модели вида

p = a + b1 * x1. (2)

 

(Мы для простоты рассматриваем уравнение для одной независимой переменной).

В принципе это та же стандартная линейная регрессионная модель в которой Y - зависимая непрерывная переменная заменена на вероятность p. Однако, исследование такой модели показывает ее непригодность, поскольку p - вероятность и ее значения ограничиваются интервалом (0,1), а правая часть уравнения, напротив, может иметь значения, лежащие вне указанного выше интервала.

Можно попробовать применить модель вида

 

p = e a + b1 * x1

 

Это уравнение гарантирует, что оценки для p будут положительными. Однако, изучая модель, мы бы скоро осознали, что и эта модель не пригодна. В самом деле, правая часть уравнения может давать значения большие единицы.

 

Для устранения этого ограничения нам нужно применить модель вида

 

P = e a + b1 * x1 /(1 + e a + b1 * x1)

 

Выражение, стоящее справа от знака равенства, называется логистической функцией. Она не может принимать как отрицательные значения, так и значения большие единицы, и, следовательно, ограничивает оценки для p требуемым интервалом.

Несложные математические преобразования позволяют от уравнения перейти к уравнению:

 

ln[ p / (1 - p)] = a + b1 * x1

 

По определению величина p / (1 - p) представляет собой "шансы успеха". По этой причине моделирование p с помощью логистической функции эквивалентно использованию линейной регрессионной модели, в которой непрерывная переменная Y заменена логарифмом от "шансов успеха", то есть мы полагаем, что зависимость между ln[ p / (1 - p)] и x1 линейная.

Для оценки статистической значимости всего уравнения в целом, с помощью метода правдоподобия вычисляется статистика χ2.

 





Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 460; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.