КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Одноканальные системы массового обслуживания
Найдем сначала среднюю длину очереди и вероятность появления очереди заданной длины на единственной станции обслуживания. Предположим, что скорость поступления и обслуживания случайны и не зависят от неограниченной длины очереди. Модель 1. Обозначим Рn – вероятность образования очереди из n заказов (включая и находящийся в обслуживании) в произвольный момент времени, l – средняя скорость появления заказов, m – средняя скорость обслуживания одного заказа. Вероятность Рn имеет четкий смысл: она показывает среднее относительное время наличия очереди длиной n при функционировании системы в стационарном режиме. Например, если Р0 = 1/2, то это означает, что в среднем половину рабочего времени очереди нет (оборудование простаивает). Справедливы следующие формулы: Рn = hn(1 – h). (2.6.1) Величина h = l/m называется интенсивностью потока заявок или интенсивностью нагрузки станции. Она выражает среднее число заявок, приходящих за среднее время обслуживания одной заявки. Найдем n – среднее число заявок, находящихся в системе n = l/(m – l). (2.6.2) Для – среднее время ожидания обслуживания, справедливо = 1/(m – l) – 1/m. (2.6.3) Для – средняя длина очереди =l . (2.6.4) Пример 2.6.2. Пусть заказы на обслуживание поступают со средней интенсивностью l = 5 заявок в час. Продолжительность выполнения одной заявки в среднем равна 10 мин., т.е. m =60/10=6 з/ч. Поскольку h=l/m= 5/6< 1, система может функционировать в стационарном режиме. Найдем среднее время ожидания обслуживания = 1/(m –l)–1/m =1/(6–5)–1/6=5/6 (50мин), тогда среднее число клиентов, ожидающих обслуживания, равно =l =25/6=4.17≈4. Для «разумного» обеспечения местами прибывающих клиентов зададимся целью обеспечить одновременно сидячими местами, например, 80% клиентов. Это эквивалентно выполнению условия Р0 + Р1 + Р2 + …+ Рw ≥ 0.8, где w – подлежащее определению число мест. Используя (2.6.1) (1 – h) + h(1 – h) +…+ hw(1 – h) ≥ 0.8. учитывая, что (1 – h) + h(1 – h) +…+ hw(1 – h) =(1 – h)(1 + h +…+ hw) = 1 –hw+1, получаем hw+1 ≤ 0.2 и окончательно w ≥ ln(0.2)/ln(5/6) – 1 = 7.8 ≈ 8. Таким образом, для одновременного размещения, по крайней мере, 80% прибывающих клиентов минимальное число сидячих мест должно быть в два раза больше среднего числа ожидающих обслуживания клиентов. Важной характеристикой является также доля времени, в течение которого станция обслуживания простаивает. Вероятность такого события Р0 =1 – h ≈ 0.17. Вероятности того, что на станции обслуживается ровно один клиент (или два – один обслуживается, второй ждет) равны соответственно: Р1 =h(1 – h) ≈ 0.139, Р2 =h 2(1 – h) ≈ 0.116. Модель 2. Рассмотрим случай ограниченной очереди, когда при наличии в системе N требований ни одна из дополнительных заявок на обслуживание не принимается либо сам клиент отказывается присоединиться к очереди из-за отсутствия места в блоке ожидания. Формулы для параметров такой системы массового обслуживания: Рn = hn(1 – h)/(1 – hN+1), n ≤ N (2.6.5) Рn = 0, n > N. Следует отметить, что в этой модели параметр h= l/m не обязательно должен быть меньше единицы, поскольку число допускаемых в систему требований ограничено, и для h = 1 Рn=1/(N +1). Выражение для среднего числа находящихся в системе заявок принимает следующий вид n = h(1 – (N+1)hN + NhN+1)/(1 – h)/(1 – hN+1), для h ≠1, (2.6.6) N/2, для h=1. Поскольку вероятность того, что заказ не имеет возможности попасть в очередь, равняется РN, доля заказов, поступающих в систему, равняется 1– РN (относительная пропускная способность системы). Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени) определяется величиной А=l(1– РN). Отсюда характеристики системы имеют вид: Для – среднее число заказов, ожидающих обслуживания: = n – l(1 – РN)/m, (2.6.7) для – среднее время ожидания обслуживания: = /l /(1 – РN). (2.6.8) Пример 2.6.3. Пусть в условиях примера 2.6.2 станция располагает пятью местами для ожидающих клиентов. В данном примере N =5+1=6, h=5/6, а РN =(5/6)6(1 – 5/6)/(1 – (5/6) 7) = 0.0774, N = 6. Отсюда следует, что частота случаев, когда клиент не попадает на станцию равняется lРN =5×0.0774=0.387 заявки в час, т.е. при 8-часовом режиме работы станция теряет за день 8·0,387=3 клиента. Относительная пропускная способность системы будет 1–0.0774=0.9226, абсолютная пропускная способность А=5×0.9226=4.613. Применяя (2.6.6) – (2.6.8), получаем n = (5/6)(1 – 7(5/6)6 + 6(5/6)7)/(1 – 5/6)/(1 – (5/6)7)= 2.29, =2.29 – 5(1 – 0.0774)/6=1.52, =1.52/5 /(1 – 0.0774)=0.33 часа (20 мин.). Таким образом, при введении ограничения на количество мест для ожидания (N=6), среднее время ожидания обслуживания сократилось на полчаса. Это было достигнуто за счет «потери» в среднем 3 клиентов в день из-за недостаточности мест для ожидания. Вычислим вероятность того, что в системе обслуживаются 0, 1 или 2 клиента: Р0 =(1 – 5/6)/(1 – (5/6)7) = 0.231, Р1 =(5/6)(1 – 5/6)/(1 – (5/6)7) = 0.193, Р2 =(5/6)2(1 – 5/6)/(1 – (5/6)7) = 0.160.
Дата добавления: 2015-04-24; Просмотров: 347; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |