Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема о структуре общего решения неоднородного уравнения





Построение фундаментальной системы).

 

.

Разделим обе части уравнения на

.

Отсюда . Нам надо найти частное решение, поэтому выберем С=1, C 1=0, получим .

Общее решение линейного неоднородного уравнения есть сумма частного решения линейного неоднородного уравнения и общего решения однородного уравнения.

.

 

Доказательство. Покажем, что - общее решение неоднородного уравнения.

1) - решение неоднородного уравнения как сумма решений однородного и неоднородного уравнений (теоремы о свойствах решений).

2) Зададим произвольные начальные условия , . Вычислим начальные условия для выбранного частного решения неоднородного уравнения . Получим систему линейных алгебраических уравнений для определения констант:

.

.

.

.........................................................................

.

Определитель этой системы – определитель Вронского. Он не равен нулю, так как решения линейно независимы. Поэтому константы определяются из этой системы по начальным условиям – правым частям системы единственным образом. Следовательно, - общее решение неоднородного уравнения.

 

Метод вариации произвольной постояннойдля линейного неоднородного дифференциального уравнения n-ого порядка. . ( ).

Здесь обозначено , заметим, если - решение однородного уравнения, то .

Заметим, всегда, применяя метод вариации, надо делить на коэффициент при старшей производной, т.е. приводить уравнение.

 

Пусть найдено решение однородного уравнения

.

Варьируем произвольные постоянные, ищем решение неоднородного уравнения в виде

.

Дифференцируем это соотношение

.

Потребуем, чтобы

.,

тогда .

Дифференцируем еще раз

.

Потребуем, чтобы

.,

тогда .

Вновь дифференцируем и т.д., в результате, после n-2 дифференцирования получим

.

.

Дифференцируем и подставляем

+ .

в неоднородное уравнение .

+ =

Так как - решения однородного уравнения, то .

Получим .

Это – последнее уравнение системы для определения варьированных констант. Соберем все уравнения в систему для определения констант.

.,

.,

........................................................

.

Так как определитель системы – определитель Вронского, не равный нулю в силу линейной независимости решений, то функции определяются из этой системы однозначно.

Теперь общее решение неоднородного уравнения определяется по формуле .

 





Дата добавления: 2015-04-24; Просмотров: 1724; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. D) комплекс проблем общемирового характера, от решения которых зависит судьба человеческой цивилизации.
  2. D) принятия решения о ликвидации учредителями или собственником
  3. I. Определение при существительном общего рода
  4. II. Межличностные стили разрешения конфликтов
  5. II. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО
  6. II. Нарушения прав владельцев привилегированных акций АО “Шахта “Воргашорская”” при проведении общего собрания акционеров 16 апреля 1996 г.
  7. II. Педагогическое понимание в структуре профессиональной компетентности руководителя ОВД
  8. II. Требования к структуре образовательной программы дошкольного образования и ее объему
  9. III. Нарушения законодательства о ценных бумагах при принятии Советом директоров АО “Шахта “Воргашорская”” решения о дополнительном выпуске акций.
  10. IV. Подготовка к проведению общего собрания
  11. IX.Дифференциальные уравнения.
  12. O Поиск возможного решения сложных задач.

studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.062 сек.