Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод подбора формы частного решения




Рассмотрим сначала уравнение второго порядка

 

1) Пусть правая часть представляет собой квазиполином .

Ищем частное решение в виде . Здесь - полином n-ой степени, - полином, степень которого надо определить.

, .

а) Если - не корень характеристического уравнения, то , и многочлен надо выбирать той же степени, что и , т.е. степени n.

б) Если - простой корень характеристического уравнения, то . В этом случае многочлен надо выбирать той же степени, что и , т.е. степени n. Тогда степень многочлена надо выбирать равной n+1. Однако при дифференцировании производная свободного члена (постоянной) равна нулю, поэтому можно выбирать в виде = .

в) Если - кратный корень характеристического уравнения, то . В этом случае многочлен надо выбирать той же степени, что и , т.е. степени n. Тогда степень многочлена надо выбирать равной n+2. Однако при двукратном дифференцировании производная не только свободного члена равна нулю, но и производная линейного члена равна нулю. Поэтому можно выбирать в виде = .

 

Пример.

 

,

, - не корень характеристического уравнения, поэтому частное решение надо искать в том же виде, что и правая часть, . Подставляем в неоднородное уравнение с правой частью .

.

. Корень содержится один раз среди корней характеристического уравнения, поэтому частное решение ищется в виде .

Подставляем в неоднородное уравнение с правой частью .

.

Суммируя оба частных решения, получаем частное решение неоднородного уравнения для исходной правой части:

.

Общее решение неоднородного уравнения будет

.

2) Правая часть имеет вид

1) Если не корни характеристического уравнения, то частное решение ищется в том виде, в котором задана правая часть:

,

где - полиномы степени m – максимальной из степеней полиномов .

б) Если - пара корней характеристического уравнения, то частное решение ищется в виде

,

 

Пример.

Пара корней = - пара корней характеристического уравнения.

Подставляем в неоднородное уравнение, получаем

, откуда

,

 

Рассмотрим неоднородное уравнение n-го порядка, покажем, как в нем применять метод подбора формы частного решения.

Здесь ситуация сложнее, так как в характеристическом уравнении n корней, действительные корни и комплексно сопряженные, простые и кратные корни.

- Пусть правая часть неоднородного уравнения имеет вид

1) Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения ищется в том же виде, что и правая часть .

2) Если - корень характеристического уравнения r-ой кратно сти, то частное решение неоднородного уравнения ищется в виде .

- Пусть правая часть неоднородного уравнения имеет вид

а) Если пара комплексно сопряженных корней не является корнями характеристического уравнения, то частное решение неоднородного уравнения ищется в том же виде, что и правая часть

, где степень m многочленов – максимальная из степеней многочленов .

1) Если пара комплексно сопряженных корней является корнями характеристического уравнения r-ой кратности, то частное решение неоднородного уравнения ищется в виде

.

 

Пример.

,

.

. содержится в корнях характеристического уравнения 2 раза, поэтому . Подставляя это частное решение в неоднородное уравнение с правой частью , получим

. Корни не содержатся в корнях характеристического уравнения, поэтому . Подставляя это частное решение в неоднородное уравнение с правой частью , получим .

. .

+ .

Пример.

.

содержится в корнях характеристического уравнения 3 раза, поэтому .

. Корни (пара корней) содержатся в корнях характеристического уравнения один раз, поэтому . Неопределенные коэффициенты определяются, как и выше, подстановкой в уравнение и сравнением коэффициентов при одинаковых степенях x, при sinx, cosx, xsinx, xcosx.

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 992; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.