Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Понятие организационно-технологической надежности строительства




ВВЕДЕНИЕ

 

В современных условиях, когда в строительном производстве занято большое количество участников, технических средств, людских и других видов ресурсов, значительно усложняются технологические, организационные, экономические и управленческие решения. По этой причине все острее становится проблема обеспечения надежности и устойчивости функционирования производственных строительных систем.

В течение последних нескольких десятилетий сформировалось новое научное направление, связанное с понятием организационно-техно­ло­ги­ческой надежности (ОТН) строительства, которая трактуется как способность технологических, организационных, экономических и управленческих решений сохранять в заданных пределах свои запроектированные качества в условиях воздействия возмущающих факторов, присущих строительству как сложной динамической вероятностной системе. [1].

Отечественная научная школа исследования, оценки, проектирования и управления ОТН строительной деятельности использует разнообразные методы и модели (аналитические, графические, статистические, имитационные и др.) при решении задачи повышения надежности строительных производственных систем. Настоящее пособие преследует цель познакомить обучающихся с основными понятиями и проблематикой нового научного направления организации и управления строительством.

Специальный учебный курс (спецкурс) «Организационно-техноло­ги­ческая надежность строительства» является продолжением общих учебных курсов: «Организация, планирование и управление железнодорожным строительством», «Технология, механизация и автоматизация железнодорожного строительства», «Экономика строительства» и др. Он тесно связан с этими курсами, но не повторяет, а дополняет их. Основной задачей спецкурса является объединение теоретических, методологических, практических подходов к решению многофакторных производственных задач на основе системного обеспечения организационно-технологической надежности строительства.

Прежде всего методическое пособие предназначено для проведения практических занятий по спецкурсу. Однако в связи с отсутствием учебной и учебно-методической литературы по данному курсу в пособии определенное место отводится изложению теоретических основ рассматриваемых вопросов, сути применяемых методов, обоснованию применяемых методик и т. д.

 

 

Под надежностью в технике понимается свойство объекта (системы) сохранять во времени способность к выполнению заданных функций в заданных условиях эксплуатации [2]. Состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения заданных параметров в пределах, установленных нормативно-технической документацией, называют работоспособным. Событие, заключающееся в нарушении работоспособности объекта, называют отказом.

Все отказы носят случайный характер, поскольку вызываются влиянием случайных факторов. Поэтому надежность систем определяется вероятностью отказа в течение гарантированного проектом срока исправной работы системы.

Теория надежности базируется на методах математической статистики, теории вероятностей и теории массового обслуживания. С позиций этих методов важен анализ структуры системы, надежность которой нужно определить. Любая система может состоять из независимых элементов, из зависимых элементов, взаимодействующих между собой, а также из всевозможных комбинаций тех и других. Очевидно, что строительные производственные системы представляют собой сложные и разнообразные сочетания зависимых и независимых элементов, характеризующихся неоднородностью.

Основной количественной характеристикой надежности системы является вероятность безотказной работы в течение заданного времени t, определяемая по формуле

р(t) = , (1)

где N – число однородных элементов в начале работы; n(t) – число отказавших (частично или полностью вышедших из строя) элементов за время работы t.

Вероятность безотказной работы является убывающей функцией времени и обладает свойствами: в начальный момент времени (при t=0) p(0) = 1,
a при t функция p(t) стремится к нулю.

На практике иногда более удобной характеристикой является вероятность отказа Q(t). Безотказная работа системы и появление отказа являются событиями, несовместимыми и противоположными, поэтому сумма их вероятностей равна 1. Следовательно,

 

Q(t) = 1– p(t). (2)

 

Для систем строительного производства характерными являются не полные отказы, а частичные, т. е. сбои в работе, которые самоустраняются в процессе непрерывного функционирования системы. Поэтому в большинстве работ по организационно-технологической надежности строительства в качестве основного показателя надежности системы используется коэффициент готовности Кг. Он представляет собой отношение продолжительности безотказной работы системы за данный период ее функционирования к сумме продолжительности безотказной работы и отказов (сбоев или простоев) за тот же период времени

 

(3)

 

где Т – продолжительность безотказной работы; tот – продолжительность отказов i-го элемента системы;

Безотказность как понятие ОТН – это свойство объекта сохранять работоспособное состояние в течение некоторого заданного времени. Вероятность безотказной работы – это вероятность того, что в заданных пределах времени отказ в работе системы не возникает.

Оценка ОТН системы может быть проведена только по результату деятельности системы. Этот результат формулируется как вероятность выполнения всего проекта или определенных работ к установленному сроку [3]. Поэтому под оценкой надежности строительных систем следует понимать оценку вероятности достижения цели.

В качестве основы для количественной оценки ОТН используется среднее время безотказной работы системы без внесения изменений в структуру и характер деятельности этой системы. Зная среднее фактическое время безотказного функционирования системы и планируемое время ее действия, можно, используя законы теории вероятностей, определить вероятность безотказного функционирования системы в течение всего заданного времени (вероятность безотказной работы – р). Эта вероятность, т. е. надежность системы, выражается в процентах или численно в интервале 0…1: 0 < p 1.

Система в процессе функционирования может находиться в состоянии отказа или безотказности. В результате устанавливается соотношение между планируемой Тпл и фактической Тф продолжительностью выполнения работ. Следовательно, условия отказа и безотказности можно записать как

– отказ – Тфпл;

– безотказность – Тф Тпл.

Для расчета надежности используется аппарат теории вероятностей, так как р является функцией распределения случайной величины Тф. Чем больше р, тем надежнее система, поэтому критерий надежности производственной системы можно представить в виде:

 

р(Тфпл) max. (4)

Факторы, определяющие вероятностный характер производственного процесса в строительстве, можно классифицировать следующим образом [3–5]:

– случайные факторы технического порядка: всевозможные поломки машин, механизмов, транспортных средств, выход из строя сетей энерго- и водоснабжения, дорог и других коммуникаций; низкое качество материалов, деталей, конструкций, оборудования, не позволяющее применить их по назначению; изменение проектных решений в процессе строительства и т. п.;

– случайные факторы технологического порядка: устранение брака, переделка недоброкачественно выполненных работ, изменение запланированной последовательности работ вследствие допущенных нарушений в технологии; появление непредвиденных работ и т. п.;

– случайные факторы организационного порядка: нарушение обязательств по выдаче проектной документации, поставкам материалов, конструкций, оборудования; срыв согласованных сроков работ какой-либо участвующей в строительстве организацией; отсутствие рабочих требуемой специальности и квалификации и т. п.;

– случайные факторы климатического порядка: ливень, ураган, распутица, снегопад, метель, гололед и т. п.;

– случайные факторы социального порядка: невыход работника на производство, невыполнение производственного задания при полном обеспечении ресурсами, умышленная порча или хищение материалов, оборудования и т. п.

Влияние внешних и внутренних случайных факторов приводит к тому, что ход производственного процесса отклоняется от ранее запланированного. В связи с этим управляющая система должна периодически вырабатывать (В) и реализовывать (Р) мероприятия, ликвидирующие отрицательные отклонения и обеспечивающие достижение объектом управления заданного результата.

Вероятность p выполнения этих действий системой управления на данном уровне руководства U определяет надежность функционирования данной системы p(U):

р(U) = p(B,P). (5)

 

В соответствии с этой формулой решение проблемы надежности заключается в разработке и реализации мероприятий (планов, организационных и управленческих решений), обеспечивающих достижение заданного результата объектом управления.

В теории вероятностей, как известно, существует так называемое правило умножения вероятностей, которое для зависимых событий гласит: вероятность совместного наступления двух событий равна произведению вероятности первого события на условную вероятность второго, вычисленную в предположении, что первое событие состоялось. Анализируя это правило, вполне определенно можно интерпретировать взаимосвязь между подсистемой выработки решений и подсистемой их реализации.

Тогда выражение (5) можно представить в виде:

 

р(U) = p(B,P) = p(B) pB(P), (6)

 

где p(B) – вероятность выработки системой решений, обеспечивающих достижение заданной цели системы; pB(P) – вероятность реализации системой выработанных решений по достижению заданной цели системы.

Из выражения (6) следует, что вероятность выработки решений и вероятность их реализации можно рассматривать отдельно. Этот вывод определяет два направления в практике решения проблемы надежности: рассмотрение надежности выработки решений и обеспечение надежности функционирования системы в процессе реализации решений.

В качестве первого пути многие исследователи избирают проблему обеспечения надежности организационно-технологических моделей строительства объектов, к числу которых относятся календарные планы производства строительно-монтажных работ (в линейном, сетевом или ином изображении).

Проблему надежности сетевых моделей рассмотрим в разд. 2 данного пособия.

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 2870; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.028 сек.