Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теоретическое вве­де­ние




Введение

В пособии представлена третья часть физического практикума по курсу общей физики. Она состоит из 18 лабораторных работ по разделам: «Волновая оптика», «Квантовая физика» и “Статистическая физика”.

В указаниях к каждой лабораторной работе сформулирована цель работы, представлены: теоретическое введение, методика измерений, описание установки, порядок выполнения работы и обработки результатов измерений. Контрольные вопросы, приведённые в конце каждой работы, облегчают подготовку к ней и защиту. Далее приведён список литературы, рекомендуемой для самостоятельной подготовки к выполнению лабораторной работы.

Кафедрой физики подготовлены методические указания по оформлению отчётов по лабораторным работам, требования к допуску, защите работ и обработке результатов измерений. Эти указания, образец выполнения лабораторной работы и сами описания имеются на сайте кафедры www.physics.vstu.edu.ru.

 

 


Лабораторная работа 3-01

Изучение интерференции света с помощью бипризмы Френеля

 

Цель работы: Наблюдение интерференционной картины, определение размера интерференционной полосы и параметра бипризмы Френеля – преломляющего угла бипризмы.

 

Интерференция волнпространственное перераспре­деление энергии волн, котороепроисходит при наложении двух или нескольких когерентных волн. Волны когерентны, если их фазы согласованы (разность фаз остаётся постоянной во времени). Когерентность – согласованное про­текание нескольких колебательных или волновых процессов. Интерференция возможна для волн любой природы.

Интенсивность электромагнитной волны про­порциональна амплитуде колебаний вектора напряженности электромаг­нитного поля:

I ~ . (1.1)

Рассмотрим две электромагнитные волны одинаковой частоты, которые накладываются друг на друга и возбуждают в некоторой точке про­странства два колебания одинакового направления:

, ,

где φ1 и φ2 определяются начальными фазами колебаний и расстояниями, пройденными волнами до точки на­ложения, но не зависят от времени. Амплитуда Е 0 результирующего коле­бания зависит от раз­ности фаз складываемых колебаний в данной точке. Для волн одинаковой частоты разность фаз колебаний не изменяется во вре­мени и равна φ1–φ2=const, то есть волны когерентны. При этом результирующая амплитуда Е 0 также остается постоянной во времени:

. (1.2)

Для когерентных волн имеет постоянное во времени значение (но свое для каж­дой точки пространства), так что ре­зультирующая интенсивность света, как следует из (1.1) и (1.2), равна

. (1.3)

Таким образом, при наложении когерентных световых волн происходит перераспределение светового потока в пространстве, в ре­зультате чего в одних местах возника­ют максимумы (если ), а в других – миниму­мы интенсивности (если ). Отсюда получаем условия максимума и минимума при интерференции: если сдвиг фаз волн в данной точке пространства

; (m =0, 1, 2, …), (1.4)

то наблюдается интерференционный максимум; если

; (m =1, 2, 3, …), (1.5)

то наблюдается минимум.

Если накладываются некогерент­ные волны, то в данной точке про­странства складываются колебания, разность фаз которых не постоянна во времени и, вообще говоря, принима­ет случайные значения. Поскольку в этом случае среднее значение , то наблюдаемая интенсивность света во всех точках пространства представляется просто суммой интенсивностей двух волн: (1.3). Та­ким образом, необходимым условием наблюдения интерференции волн явля­ется их когерентность.




Поделиться с друзьями:


Дата добавления: 2015-03-29; Просмотров: 361; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.