КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Анизотропия – причина двулучепреломления
Дихроизм Существуют двулучепреломляющие кристаллы, в которых один из лучей, например обыкновенный, поглощается в определенном диапазоне длин волн значительно сильнее, чем другой. Зависимость поглощения света от его поляризации называют дихроизмом. Именно явление дихроизма позволило на практике легко получать и широко использовать линейно поляризованный свет. Весьма сильным дихроизмом в видимых лучах обладает кристалл турмалина. В нем обыкновенный луч практически полностью поглощается на длине 1 мм. Дихроичные поляризаторы на основе монокристаллической пластинки турмалина не нашли широкого применения в основном из-за трудностей, связанных с получением кристаллов необходимых размеров. Более популярной оказалась другая разновидность дихроичных поляризаторов, – так называемые пленочные поляроиды, изобретенные в 20-х годах ХХ века. Это анизотропные полимерные пленки, пропитанные анизотропными же молекулами или микрокристаллами. Если полимерную пленку, состоящую из весьма длинных, линейных вытянутых макромолекул полимера в нагретом и размягченном состоянии подвергнуть механическому растяжению, то полимерные молекулы ориентируются своими длинными осями вдоль направления растяжения и пленка, таким образом, становится анизотропной. Если при этом в полимере растворено вещество, молекулы которого анизотропны по форме и обладают высоким дихроизмом, например, игольчатые микрокристаллы герапатита (соль йода и хинина), то упорядоченная, ориентированная матрица молекул полимера ориентирует и примесные молекулы. В этих кристаллах один из лучей поглощается на пути примерно в 0.1 мм. Таким путем изготавливаются поляроиды высокого качества и достаточно большого размера, рассчитанные на широкую спектральную область (например, на весь видимый диапазон длин волн). Они достаточно дешевы для массового производства, и многие практические применения поляризации света обязаны именно им. Двойное лучепреломление объясняется анизотропией кристаллов. В кристаллах некубической системы зависимость от направления вектора напряжённости электрического поля обнаруживает, в частности, диэлектрическая проницаемость ε. Если вектор направлен по оптической оси или в направлениях, перпендикулярных к ней, то в одноосных кристаллах ε имеет различные значения и соответственно. В других направлениях ε имеет промежуточные значения. Поскольку , (3.5) то из анизотропии ε вытекает, что электромагнитным волнам с различными направлениями колебаний вектора соответствуют разные значения показателя преломления п. Поэтому скорость световых волн в кристалле будет зависеть от направления колебаний светового вектора . В обыкновенном луче колебания светового вектора происходят в направлении, перпендикулярном к главному сечению кристалла (на рис.3.8 эти колебания изображены точками на соответствующем луче). Поэтому при любом направлении обыкновенного луча (на рис.3.7 указаны три направления: 1, 2 и 3) вектор образует с оптической осью кристалла прямой угол и скорость световой волны будет одна и та же, равная . (3.6) Изображая скорость обыкновенного луча в виде отрезков, отложенных по разным направлениям, мы получим сферическую поверхность. На рис.3.7 показано пересечение этой поверхности с плоскостью чертежа. Представим себе, что в точке О кристалла помещается точечный источник света. Тогда построенная нами сфера будет не что иное, как волновая поверхность обыкновенных лучей в кристалле. Колебания в необыкновенном луче совершаются в главном сечении. Поэтому для разных лучей направления колебаний вектора (на рис.3.7 эти направления изображены двусторонними стрелками) образуют с оптической осью разные углы. Для луча 1 угол равен π/2, вследствие чего скорость равна ; для луча 2угол равен нулю, и скорость равна . Для луча 3 скорость имеет промежуточное значение. Таким образом, волновая поверхность необыкновенных лучей представляет собой эллипсоид вращения. В местах пересечения с оптической осью кристалла сфера и эллипсоид соприкасаются. В зависимости от того, какая из скоростей, vо или ve, больше, различают положительные и отрицательные одноосные кристаллы. У положительных кристаллов ve<v0 (n е> n 0). У отрицательных кристаллов ve> v0 (n e< n 0).
Дата добавления: 2015-03-29; Просмотров: 955; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |