Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Билет 2. Стоячие акустические волны




Стоячие акустические волны. Акустические резонаторы.

При наложении распространяющихся навстречу монохроматических волн одинаковой частоты, амплитуды (например, прямой и отражённой) образуются стоячие волны.

s(t,x)=Acos[w (t–x/c)]–Acos[w (t+x/c)]=2Asin[w x/c]sinw t

В каждой точке порисходит гармоническое колебание с частотой w, причём амплитуда зависит от положения точки по закону: А(х)=2А|sin[wx/c]|

Акустическая волна – это периодическое возмущение плотности среды, распространяющееся в среде со скоростью звука. Периодические возмущения плотности среды называются акустическими колебаниями. Акустические колебания бывают продольными (колебания вдоль направления распространения волны) и поперечными (колебания в плоскости, перпендикулярной направлению распространения волны).

Стоячая акустическая волна – это акустическая волна, которая является суперпозицией прямой и отраженной волны в ограниченной среде. Распределение амплитуды стоячей волны (пучности и узлы) зависит от физических параметров среды и граничных условий.

Акустический резонатор – это устройство, предназначенное для получения резонанса акустических колебаний в среде, заполняющей устройство. Акустический резонатор имеет ряд собственных резонансных частот, каждая из которых имеет собственную добротность и, соответственно, затухание. Ряд колебаний на резонансных частотах резонатора называются модами резонатора.

Распространенные примеры:

1. Камертон – устройство для настройки музыкальных инструментов, издающее звук, высота которого соответствует одной из семи нот музыкального ряда.. Для камертона важным является не только долгое (малое затухание) и чистое звучание, но и возбуждение только одной из мод этого резонатора. Именно форма камертона позволяет возбуждать колебание только одной моды с высокой добротностью. Остальные моды имеют низкую добротность колебаний.

2. Кварцевый резонатор – это устройство, где в качестве акустической среды используется пластинка кристаллического кварца. Пластинка хорошо отполирована, грани выполнены с высокой степенью параллельности. Длины волн собственных мод колебаний описывабтся уравнением

L = n lр/2,

где lр- длина волны, которая может испытывать резонанс при длине резонатора L, n – целое число.

 

 

Вопрос 1.

Инерциальные системы отсчёта. Преобразования Галлилея. Инварианты этого преобразования.

Система отсчёта, в которой все свободные тела движутся прямолинейно и равномерно называется инерциальной.

Утверждение впервые высказанное Г. Галилеем, о том, что во всех инерциальных системах координат механические явления протекают одиноково, называется принципом относительности Галилея. В дальнейшем в результате изучений других явлеий, в частности электромагнитных, справедливость этих полоений была признана для любых явлений. В таком общем виде оно называется принципом отнгсительности СТО или просто принципом относиельности

Преобразования Галилея. Рассмотрим систему отсчета, либо неподвижную, либо движущуюся с постоянной скоростью и с единым временем. Для этих систем справедлив принцип относительности Галилея. Имеется система отсчета К и система отсчета К, которая движется со скоростью V относительно системы К.

[x; y; z; t x; y’; z’; t’]

Физическая сущность этого преобразования составляет принцип относительности Галилея

1. t = t

2. DL = DL’ (длины отрезков одни и те же).

Следующие преобразования отражают механический принцип относительности:

x = x – vt; y = y; z = z; t = t

Обратные преобразования: x = x+ vt; y = y; z = z; t = t

(из них можно получить закон сложения скоростей)

Уравнения, остающиеся неизменными при переходе от одной системы отсчета к другой, называются инвариантными.

События, одновременные в одной системе, одновременны и в другой, т. е. утверждение об одновременности двух двух событий имеет абсолютный характер, независимый от системы координат.

Длинна – инвариант преобразований Галлилея. Длинной движущегося стержня наз. расстояние между координатами его концов в некоторый момент времени. Следуя из этого инвариантность длинны легко доказывается.

Интервал времени явл. инвариантом преобразований Галлилея (Dt=t2–t1=t’2–t’1=Dt’)

Сложение скоростей получается из дифференциирования формул преобразования Галлилея.

Ускорение инвариантно относительно преобразований Галлилея. Это утверждение доказывается дифференциированием преобразований скорости и учитывая, что Dt=Dt’.

 

Вопрос 2.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 442; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.