КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Освещение 2 страница
Герметизированные производственные помещения оборудованы централизованной системой уборки пыли и устройством кондиционирования воздуха.
18 Многоэтажные промышленные здания могут быть малой, средней и большой гибкости. Здания малой гибкости имеют, как правило, ячейковое построение плана с сеткой колонн бХб м. Здание состоит из типовых секций размером 36x42 м (рис. 14.9, а). В средней зоне секции размещают лестничную клетку, два лифта, две шахты для коммуникаций, вспомогательные и складские помещения. Под производство отводят площадь по периметру здания, освещаемую естественным светомНа первом этаже размещают административно-хозяйственные помещения, пищевой блок, медицинский пункт, склады готовой продукции и полуфабрикатов. Здания средней гибкости применяют в производствах, выпускающих средне- и крупногабаритные изделия легкого веса (например, автомобили) или имеющих крупногабаритное, но легкое оборудование (например,ткацкие станки). Сетка колонн в этих зданиях может быть 12x12, 18x18 или 12x6, 18x6 м. При квадратной сетке колонн междуэтажные перекрытия делают кессонными или безбалочными. В зданиях средней гибкости за счет укрупненной сетки колонн достигают экономии рабочей площади на 6—8%. Здания большой гибкости проектируют с пролетами 24, 30 и даже 36 м. Высота несущих конструкций междуэтажных перекрытий (2,4—3 м) позволяет в целях рационального использования объема здания в пространстве между ними делать технические этажи и располагать в них вспомогательные помещения. Таким образом, здание большой гибкости состоит из чередующихся по высоте основных производственных и технических этажей.
19. ПОНЯТИЕ О ГЕНЕРАЛЬНОМ ПЛАНЕ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ Генеральный план промышленного предприятия решают с учетом генерального плана всего промышленного района. Он представляет собой комплексное решение планировки, застройки, транспорта, инженерных коммуникаций и благоустройства производственной территории. При проектировании генеральных планов промышленных районов и отдельных предприятий большое внимание уделяют зонированию территории, которое осуществляют по производственному функциональному (технологическому) признаку. Всю производственную территорию промышленного предприятия или района подразделяют на четыре зоны — предзаводскую, включающую заводские вспомогательные здания вторую — производственную, в которой сосредоточивают производственные цехи основного и вспомогательного назначения; —подсобную, в которой располагают энергетические объекты, наземные и подземные инженерные коммуникации и т. п.; — складскую, в которой располагают здания для хранения материалов, полуфабрикатов и готовой продукции, а также транспортные здания и сооружения При проектировании генеральных планов промышленных предприятий и районов выработался определенный порядок расположения зон, при котором может быть достигнуто четкое разделение людских и грузовых потоков от селитебной территории: первая — предзаводская; вторая — производственная (основные и вспомогательные цехи); третья — складская; четвертая — подсобная. При проектировании генеральных планов стремятся к компактности застройки, что главным образом обеспечивается блокированием производственных зданий. На перспективу с целью дальнейшего расширения и реконструкции предприятия оставляют резервные территории как на промышленной площадке, так и за ее пределами. При решении генерального плана промышленной территории учитывают очередность застройки и ввода в действие отдельных частей предприятия при условии архитектурной законченности каждого этапа строительства. Плотность застройки промышленных площадок принимают в пределах, предусмотренных нормами; в зависимости от отрасли промышленности площадь застройки составляет 30— 60% общей площади территории промышленного предприятия. Проект генерального плана обосновывают соответствующими технико-экономическими показателями, по которым устанавливают эффективность использования площадки и принятых решений.
31. КЛАССИФИКАЦИЯ ВСПОМОГАТЕЛЬНЫХ ЗДАНИЙ И ПОМЕЩЕНИЙ Система культурно-бытового обслуживания на промышленных предприятиях имеет четкую ступенчатую организацию. I ступень охватывает внутрицеховые помещения и устройства повседневного местного обслуживания II ступень обслуживания охваты- III ступень обслуживания охватывает заводские или общезаводские (на группу предприятий) объекты и учреждения.. IV ступень обслуживания охватывает объекты районного значения. По назначению вспомогательные помещения подразделяют на следующие основные группы: Санитарно-бытовые помещения могут быть общие и специальные. К общим относят: гардеробные, умывальные, уборные, курительные, помещения для кормления грудных детей и др. К специальным — душевые, помещения для стирки, химической чистки, сушки, обеспыливания, обезвоживания и ремонта специальной одежды и и др. Предприятия общественного питания предусматривают: столовые-заготовочные, столовые-доготовочные, буфеты, комнаты приема пищи, Помещения для профессионально-технического обучения включают: учебные помещения для общеобразовательной подготовки (школы рабочей молодежи), учебные рабочие места, учебные участки, классы, помещения для производственного Помещения здравоохранения: больницы (стационары), амбулатории, поликлиники, профилактории, здравпункты и др. Помещения культурного и спортивного обслуживания: культурно-просветительные, объекты для занятий спортом,помещения и места для кратковременного отдыха в рабочее время и в обеденный перерыв. Коммунально-бытовые и торговые помещения включают: помещения комплексных приемных, столы заказов, гостиницы, общежития для приезжих. Помещения административно-технического назначения и общественных организаций включают: рабочие комнаты сотрудников различных служб, залы совещаний, кабинеты инженерно-технического персонала, секретариаты, машинописные бюро, Помещения технического обслуживания включают: счетно-вычислительные станции, вычислительные центры, автоматические телефонные станции, радиоузлы, фотолаборатории По этажности вспомогательные здания подразделяют на одноэтажные и многоэтажные — не более девяти этажей. Вспомогательные здания также подразделяют по времени их использования на объекты, используемые в течение рабочего дня, и объекты, используемые до или после рабочего дня. По конструктивной схеме вспомогательные здания подразделяют на две группы — каркасные и здания с несущими стенами
34. ОБЪЕМНО-ПЛАНИРОВОЧНЫЕ И КОНСТРУКТИВНЫЕ РЕШЕНИЯ ВСПОМОГАТЕЛЬНЫХ ЗДАНИЙ И ПОМЕЩЕНИЙ Объемно-планировочные решения вспомогательныхзданий, как правило, разрабатывают на основе унифицированных габаритных схем или типовых - планировочных элементов Унифицированные габаритные схемы чаще всего имеют ширину 12 (для пристроенных) или 18 м (для отдельно стоящих) зданий, при длине 36, 48, 60 м и числе этажей два—четыре. Нормативная высота этажей вспомогательных зданий в зависимости от назначения помещений может быть 3; 3,3; 3,6; 4,2; 4,8 м. Для ряда вспомогательных зданий (например, административных) целесообразно применение ширины 15 м (6 + 3 + 6 = 15 м), а для некоторых и до 24, 36 м и более, что значительно повышает гибкость планировки. Для небольших зданий административно-технического или бытового обслуживания более экономично применять конструктивную схему вспомогательного здания с несущими продольными и поперечными стенами из крупных панелей, которые применяют в гражданском строительстве, благодаря чему возможно получить разнообразные решения фасадов. Для бытовых помещений планировочные элементы даются в пределах одного шага колонн, а для столовых, здравпунктов, проходных и других подсобных помещений — в виде законченного планировочного комплекса. Вспомогательные здания имеют бескоридорную (зальную) или коридорную систему планировки. В отдельно стоящих зданиях зальной системы планировки вспомогательные помещения, требующие естественного освещения, располагают на всей ширине здания, в пристроенных зданиях — максимально на 2/3 его ширины. Согласно СНиП 11-92-76 число выходов из вспомогательных зданий по условиям эвакуации должно быть не менее двух Удобства для работающих и четкость в объемно-планировочных решениях вспомогательных зданий достигают за счет функционального зонирования отдельных групп помещений по ширине, длине и высоте здания Желательное размещение столовой — первый этаж или выше, но с подъемниками для продуктов. Здравпункт целесообразно размещать на первом этаже. Культурно-массовые помещения желательно разместить также близ перехода и близ столовой, чтобы их было легко использовать в обеденный перерыв. Гардеробно-душевой блок помещений при небольшом числе работающих размещают близ цеха, обычно на первом этаже. При большой численности рабочих бытовые помещения возможно располагать на первом и на втором этаже. При размещении секций на разных этажах душевые, умывальные, уборные располагают по одним вертикалям. Применение типовых секций позволяет решить здание с минимальным числом типоразмеров конструкций, сократить сроки, стоимость проектирования и строительства. 22. ПРИЕМЫ АРХИТЕКТУРНЫХ РЕШЕНИЙ ПРОМЫШЛЕННЫХ ЗДАНИЙ Промышленные здания могут иметь как фронтально-симметричные, так и фронтально-асимметричные композиции При проектировании следует стремиться к простым, лаконичным и четким композиционным решениям. Для объемно-планировочных и конструктивных решений промышленных зданий, выполненных с учетом требований типизации и унификации, характерны крупные формы элементов несущих и особенно ограждающих конструкций. Крупные элементы фасада, масштабно взятые по отношению к окружающей застройке, нередко позволяют достигнуть выразительной архитектуры здания. Большая протяженность многих промышленных зданий вынуждает в композиции прибегать к многократной повторяемости одного и того же элемента. При решении подобных композиций используют прием ритмического, метрического ряда. Ритмичные членения фасада могут быть образованы чередованием глухих и остекленных участков стены, несущих конструкций покрытия, повторением одинаковых объемов зданий. Соблюдение пропорциональных соотношений между отдельными элементами способствует повышению архитектурной выразительности здания. При пропорционировании учитывают унификацию и модульность конструктивных элементов, образующих промышленное здание. При этом можно использовать контрастные пропорциональные соотношения Для современных одноэтажных и многоэтажных промышленных зданий наиболее характерны горизонтальные членения фасадов, которые обусловлены применением навесных стен из типовых крупных панелей длиной 6 м, а также устройством ленточных световых проемов и солнцезащитных устройств, придающих композиции динамичный характер. Композиция фасада, основанная на вертикальных членениях, может достигаться за счет соответствующей формы светопроемов и простенков между ними (рис. 21. 2, б Статически уравновешенная композиция здания достигается тогда, когда членение стен и составляющих их панелей, а также проемов имеет пропорциональное соотношение, близкое 1: 1 (рис. 21. 3). Сплошное остекление вызывает впечатление легкости, воздушности, особенно при убывающих соотношениях (5: 3 и 8: 5) пропорций стен и членений переплетов. Архитектурное решение фасада промышленного здания во многом зависит от профиля покрытия. Применение покрытий с различным очертанием поверхности (прямолинейное, криволинейное, пилообразное и т. д.) в сочетании с элементами стены позволяет достигать различных композиционных решений фасада (рис. 21. 4). Большая протяженность фасадов промышленных зданий, особенно при ленточном и сплошном остеклении, вызывает впечатление монотонности, однообразия. Поэтому для повышения архитектурной выразительности здания прибегают к контрастам, образованным отдельными элементами фасада. Контрастными могут быть решения главного и торцового фасадов производственного и вспомогательного зданий. Могут быть также выделены ворота, жалюзи, вентиляционные шахты и другие технологические элементы. Контрастное выделение отдельных элементов на фасаде промышленного здания дает возможность его зрительной оценки, масштабно сопоставить отдельные части здания. Акцент отдельных конструктивных элементов фасада промышленного здания играет существенную роль в его общем композиционном решении. Обычно акцентируют углы здания, перемычки над проемами, козырьки над входами, наружные открытые лестницы. Архитектурной выразительности промышленных зданий достигают, кроме того, путем использования таких композиционных средств, как малые архитектурные формы: светильники, флагштоки и др., а также цвет, фактура материала и средств монументального искусства. Большое значение в формировании архитектурно-художественного образа здания играют новые строительные материалы. При введении цвета предпочтение следует отдавать естественным цветам различных материалов Произведения монументальной скульптуры, живописи не только усиливают архитектурную выразительность промышленных зданий, но и часто подчеркивают идейное содержание решения. Архитектурно-художественная выразительность каждого промышленного здания должна быть композиционно увязана и согласована с архитектурно-художественным решением всех сооружений промышленного предприятия. Достижение архитектурно-художественного единства при решении всего промышленного предприятия или промышленного узла в целом — одно из основных требований, предъявляемых к внешнему облику промышленных зданий.
23. ИНТЕРЬЕРЫ ПРОМЫШЛЕННЫХ ЗДАНИЙ И ЗНАЧЕНИЕ ЦВЕТА При проектировании одноэтажных и многоэтажных промышленных зданий принцип единства внутреннего пространства получает в последнее время все большее признание. Отказ от излишних внутренних стен и перегородок позволяет применять более крупное оборудование, упрощает работы, связанные с модернизацией производственного процесса. Крупная сетка колонн придает объемно-планировочному решению производственного здания универсальность с совершенно новыми качествами интерьера. Архитектурное выражение единства внутреннего пространства еще более усиливается, когда плоскости пола и потолка, проходя через весь зал. имеют одинаковые колористические (т. е. цветовые) и конструктивные решения в разных помещениях, разделенных стеклянными перегородками. Зрительный отрыв при помощи цвета колонн каркаса от несущих конструкций создает иллюзию, что единое пространство цеха перекрыто большепролетными конструкциями. Связь производственных помещений с внешним пространством осуществляется устройством ленточного или сплошного остекления. Зрительное слияние интерьера и природного окружения (см. рис. 22.1) благоприятно воздействует на психологическое состояние работающих, снижает их утомляемость. Художественный и психологический эффект достигается также введением в композицию интерьера ложных светопроемов, пейзажных световых витражей и т. п. Пространственное восприятие интерьера зависит от конструктивного решения здания Для перекрытия больших пролетов применяют своды, оболочки и другие пространственные несущие конструкции. Их эффективные формы придают легкость и выразительность архитектуре интерьера. Технологическое оборудование часто сильно влияет на композицию интерьера Система размещения оборудования и коммуникаций может способствовать улучшению архитектурной выразительности интерьера, равно как и выпускаемая продукция может придавать производственному интерьеру новые архитектурные качества. Выразительность интерьера подчеркивается естественным или искусственным освещением
Цвет в производственной среде рассматривается как средство композиции, как фактор психологического комфорта и как средство информации К цветовой среде интерьера предъявляют как функциональные, так и архитектурно-художественные требования. К функциональным относят требования, выполнение которых гарантирует создание оптимальных условий труда на рабочем месте, способствующих снижению производственного травматизма, сохранению здоровья работающих, повышению их внимательности, улучшению работы органов зрения. . При решении производственного интерьера существуют два направления применения цвета: первое основано на использовании ярких контрастных сочетаний цветов, второе — на использовании тональных цветовых сочетаний. На предприятиях с большим числом работающих, когда рабочие находятся в цехе в течение всей смены, применяют тональные сочетания без ярких цветовых акцентов. Колористическая окраска строительных конструкций,станков и оборудования с применением оптимальных цветов и яркая контрастная окраска трубопроводов и элементов наглядной агитации придают архитектурное разнообразие интерьерам промышленных зданий этой группы. Обычно теплую гамму цветов применяют в неотапливаемых цехах, в помещениях без естественного освещения и в производственных зданиях, расположенных в холодном климате; холодную гамму — в производственных помещениях с большими тепловыделениями предприятий в любом климате или на предприятиях, расположенных в жарком климате Особенности архитектурной композиции интерьера можно подчеркнуть путем соответствующего подбора цветовой гаммы. Это достигается либо введением цветовых ритмических композиций, либо выявлением тектонической структуры здания, либо изменением масштабности интерьера. При решении архитектурной композиции интерьера часто применяют системы метрического и нарастающего ритма. Характер цветовой гаммы может изменять восприятие масштабности интерьера. Лаконичное решение цветовой композиции с минимальным числом цветов, с крупными цветовыми плоскостями при сдержанных гармонических соотношениях обусловливает крупный масштаб интерьера. Многоцветные композиции расчленяют интерьер помещений на отдельные объемы. Большое значение в цветовой композиции интерьера играют окрашиваемые поверхности станков, машин, установок и других технологических элементов. Выбор цвета оборудования увязывают с общей цветовой гаммой всего помещения. При этом учитывают назначение станка, его архитектонику, характер загрязнения в процессе работы и цвет обрабатываемого изделия. Основная задача при назначении цвета — создание оптимальных условий зрительной работы, а также отображение назначения станка. Для окраски элементов рабочей зоны, рабочих мест и всего помещения цеха применяют как максимально насыщенные, так и разбеленные цвета. Для улучшения качества зрительной информации вводят специальные сигнально-предупредительные цвета. Они повышают безопасность работы и доходчивость информационных сообщений, а также устраняют монотонность в окраске помещений. Сигнально-предупреди-тельная маркировочная окраска вводится также для обозначения коммуникаций, благодаря чему повышается безопасность работ. 36. ОБЩИЕ ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ ПРОМЫШЛЕННЫХ ЗДАНИЙ Конструктивные элементы и сопряжение их между собой, т. е. конструктивные узлы проектируют в соответствии с направлением внешних силовых и несиловых воздействий, величиной напряжений и других физических процессов, возникающих в конструкции. Для выбора конструктивного решения любого элемента здания целесообразно: на первом этапе проектирования определить функциональное назначение и место конструктивного элемента в здании. На втором этапе решения поставленной задачи возникает необходимость всю совокупность воздействий, которым подвергается проектируемый элемент в процессе изготовления, доставки на постройку, монтажа и последующей эксплуатации, схематизировать и представить в виде системы простейших воздействий. Выявить все последствия, обусловленные основными видами воздействий, с учетом вероятности их возникновения, повторяемости и совпадения,— основная задача третьего этапа конструирования. На четвертом этапе устанавливают требования, которым должен удовлетворять конструируемый элемент. Указанные требования устанавливают допустимые пределы возможных последствий, нормируют сроки службы и эксплуатационные качества элемента, его эстетические качества, степень индустриальности. Требования, предъявляемые к элементу, предопределяют его прочность и устойчивость, изолирующую способность, долговечность, огнестойкость, гигиеничность, художественную выразительность, строительную технологичность, технико-экономическую целесообразность. После того, как четко выявлены и схематизированы все воздействия, определены последствия,а также уточнены предъявляемые к нему требования, предоставляется возможным подойти к основному, пятому, этапу решения задачи — выбору замысла конструкции на основе сопоставления различных вариантов ее решения и с использованием различных строительных материалов. Принципиальное решение конструкций, включая выбор материалов, требующихся для ее осуществления, должно сопровождаться проведением необходимых расчетов для установления размеров как самой конструкции, так и составных ее частей. После определения всех размеров и графического отображения конструируемого элемента важно дать ему всестороннюю технико-экономическую оценку и сравнить с другими имеющимися решениями. Положительной стороной рассмотренного метода решения задачи, когда она формализуется и расчленяется на ряд частных задач, рассматриваемых в их логической последовательности, надо считать и то, что она может решаться математически с использованием ЭВМ и при этом менее вероятно возникновение случайных ошибок. 12. ЖЕЛЕЗОБЕТОННЫЕ КАРКАСЫ ОДНОЭТАЖНЫХ ЗДАНИЙ Колонны каркаса. сборные железобетонные колонны подразделяют на две группы. Колонны, относящиеся к первой группе, предназначены для зданий без мостовых кранов, в бескрановых цехах и в цехах, оснащенных подвесным подъемно-транспортным оборудованием. Колонны, относящиеся ко второй группе, применяют в цехах, оборудованных мостовыми кранами. По конструктивному решению колонны разделяют на одноветвевые и двухветвевые, по местоположению в здании — на крайние, средние и располагаемые у торцевых стен.] Фундаменты под колонны. Фундаменты устраивают монолитными и сборными. Сборные железобетонные фундаменты могут быть из одного блока, из блока и плиты или из нескольких блоков и плит. Блоки и плиты укладывают на подготовку толщиной 100 мм — щебеночную при сухих грунтах и бетонную (марки 50) при влажных грунтах. Площадь подошвы и другие размеры фундамента устанавливают по расчету в зависимости от передаваемой на него нагрузки и Фундаментные балки. Фундаментные балки укладывают на специально заготовленные бетонные столбики, устанавливаемые на обрезы фундаментов (рис. 24.5, а). Основные фундаментные балки изготовляют высотой 450 мм (для шага колонн 6 м) и 600 мм (для шага колонн 12 м) и шириной 260, 300, 400 и 520 мм. Сечение фундаментных балок может быть тавровым, трапециевидным и прямоугольным. Обвязочные балки служат для опирания наружных стен в местах перепада высот зданий, а при расположении этих балок над оконными проемами они выполняют роль перемычек. Изготовляют обвязочные балки разрезными Железобетонные подкрановые балки служат опорами для рельсов, по которым передвигаются мостовые краны. Кроме того, они обеспечивают продольную пространственную жесткость каркаса здания. Железобетонные подкрановые балки имеют ограниченное применение и могут быть разрезными и неразрезными. Несущие конструкции покрытий промышленных зданий подразделяют на стропильные, подстропильные и несущие элементы ограждающей части покрытия. В промышленных зданиях обычно применяют следующие типы стропильных несущих конструкций: плоскостные — балки, фермы, арки и рамы; пространственные — оболочки, складки, купола, своды и висячие системы. Подстропильные конструкции. В тех случаях, когда шаг колонн каркаса превышает шаг несущих конструкций покрытия — балок или ферм, их опирают на подстропильные конструкции (рис. 24.32). Несущие элементы ограждающей части покрытий. При плоских скатных несущих конструкциях промышленных зданий несущие элементы ограждающей части покрытий могут быть выполнены с применением прогонов, по которым укладывают мелкоразмерные плиты, или в виде крупноразмерных плит. В первом случае покрытие получило название прогонного, и во втором — беспрогонного (рис. 24.34, а, б). Связи. подразделяют на вертикальные и горизонтальные. Первые устраивают между колоннами и в покрытиях, вторые — только в пределах покрытий. Конструкция связей зависит от высоты здания, величины пролета, шага колонн каркаса, наличия мостовых кранов и их грузоподъемности
26 Железобетонные балки применяют для устройства покрытий в промышленных зданиях при пролетах 6, 9, 12 и 18 м. Необходимость балочных покрытий при пролетах 6, 9 и 12 м возникает в случае подвески к несущим конструкциям монорельсов или кранов. Железобетонные балки могут быть односкатными, двухскатными и с параллельными поясами (рис. 24.9). Односкатные балки применяют в зданиях с шагом колонн 6 м и наружным отводом воды. Двухскатные балки устанавливают как в зданиях с наружным, так и с внутренним отводом воды. Балки пролетами 6, 9 и 12 м устанавливают только с шагом 6 м, а балки пролетом 18 м — с шагом 6 и 12 м. При наличии подвесного транспорта назависимо от пролета балки ставят с шагом 6 м. В целях уменьшения массы балок и для пропуска коммуникаций в их стенах можно устраивать отверстия различного очертания. Односкатные балки опирают на типовые железобетонные колонны разной высоты, которая кратна модулю 600 мм. В связи с этим уклон односкатных балок пролетом 6 м будет 1:10, пролетом 9 м — 1:15, а пролетом 12 м — 1:20. Уклон верхнего пояса двускатных балок делают 1:12. Железобетонные фермы применяют обычно для перекрытия пролетов 18, 24 и 30 м, их устанавливают с шагом 6 или 12 м. Фермы пролетом 18 м легче железобетонных балок того же пролета, но более трудоемки в изготовлении. В современной практике промышленного строительства наибольшее распространение получили фермы сегментного очертания и с параллельными поясами (рис. 24.11), причем обе включены в номенклатуру типовых сборных железобетонных конструкций заводского изготовления. Железобетонные фермы могут быть цельными и составными, последние собирают из двух полуферм (отправочных марок), или из блоков, либо из линейных элементов. Включенные в номенклатуру сборных железобетонных конструкций сегментные фермы пролетами 18, 24, 30 м собирают из заранее изготовленных линейных элементов верхнего и нижнего пояса и решетки. Линейные элементы имеют длину, равную панели фермы, а для нижнего пояса иногда принимают длину, равную пролету фермы. . Железобетонные фермы позволяют оборудовать пролеты зданий подвесным транспортом грузоподъемностью до 5 т (при шаге ферм 6 м). По верхнему поясу сегментных ферм возможна установка конструкций световых и аэрационных фонарей. Для зданий, где необходимо использовать межферменное пространство для вспомогательных помещений или коммуникаций, применяют безраскосные фермы со стойками через 3 м (рис. 24.12 Безраскосные фермы позволяют уменьшить число типов стропильных ферм, кроме того, они, по сравнению с фермами, имеющими раскосную решетку, менее трудоемки в изготовлении.
21 Железобетонные арки целесообразно применять при больших пролетах (40 м и более). Арки подразделяют на трехшарнирные с шарнирами на опорах и в середине пролета, двух-шарнирные с шарнирами на опорах и бесшарнирные. Очертание разбивочной оси арок должно максимально совпадать с линией давления, с тем, чтобы арки главным образом работали на сжатие. Опорами арок могут быть колонны здания или специальные фундаменты. При больших пролетах арки, как правило, опирают непосредственно на фундаменты. Самые распространенные — двух-шарнирные арки, наиболее простые в изготовлении и монтаже. При температурных воздействиях они имеют возможность изгибаться, свободно поворачиваясь в шарнирах без существенного увеличения напряжений в сечениях арки. В двухшарнирных арках распор воспринимает затяжка и передает его на опоры. Бесшарнирные арки имеют наиболее легкое конструктивное решение, но для их опирания необходимо устройство мощных фундаментов, к тому же они чувствительны к неравномерным осадкам грунтов основания. Бесшарнирные арки при их опирании непосредственно на фундаменты выполняют, как правило, без затяжек. Железобетонные рамы устраивают однопролетными и многопролетными, монолитными и сборными (рис.24.14). Рамы представляют собой стержневую конструкцию, геометрическую неизменяемость которой обеспечивают жесткие соединения элементов рамы в узлах. Очертание ригелей в раме может быть прямолинейным, ломаным или криволинейным. Жесткое соединение элементов рамы в узлах позволяет увеличить размер перекрываемого пролета. Конструктивное решение однопро-летной двухшарнирной рамы из предварительно напряженного железобетона со стойками переменного сечения и ригелем коробчатого сечения показано на рис. 24.14, а, однопролетной железобетонной рамы со стойками, жестко заделанными в фундаменты, и с консолями для опирания подкрановых балок под мостовой кран — на рис. 24.14, в. В этих примерах стойки рам выступают из плоскости стен в наружную сторону, что придает зданиям своеобразное архитектурное решение.
Дата добавления: 2015-04-25; Просмотров: 343; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |