Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Устройство и принцип работы контроллеров




Современные контроллеры могут обрабатывать дискретные и аналоговые сигналы, управлять клапанами, шаговыми двигателями, сервоприводами, преобразователями частоты, осуществлять регулирование (имеются встроенные регуляторы). Высокие эксплуатационные характеристики делают целесообразным применение контроллеров везде, где требуется логическая обработка сигналов от датчиков.

Применение контроллера обеспечивает:

- высокую надежность;

- простое тиражирование и обслуживание устройств управления;

- ускоряет монтаж и наладку оборудования;

- обеспечивает быстрое обновление алгоритмов управления (в том числе и на работающем оборудовании).

Кроме прямых выгод от применения контроллеров, обусловленных низкой ценой и высокой надежностью, есть и косвенные. Появляется возможность реализовать дополнительные функции, не усложняя и не увеличивая стоимость готовой продукции, которые помогут полнее реализовать возможности оборудования. Быстрое развитие микроэлектроники позволяет ожидать дальнейшего снижения цен и улучшения характеристик контроллеров, что является дополнительным стимулом к их применению. Большой ассортимент контроллеров позволяет найти оптимальное решение как для несложных задач, так и для комплексной автоматизации производства.

 

 

Контроллеры представляют собой микропроцессорные устройства, выполняющие определенные действия по заложенной в них программе. По сути, контроллеры мало чем отличаются от микро-ЭВМ (компьютеров) и имеют одинаковые с ними основные узлы. Контроллеры, как и большинство существующих на сегодняшний день ЭВМ, построены по архитектуре фон Неймана: они содержат процессор (блок управления + арифметико-логическое устройство), память и устройства ввода-вывода. На рис. 1.1 приведена общая структурная схема контроллера. Однако надо отметить, что конкретные модели контроллеров могут не вполне соответствовать приведенной схеме.

 

Рис. 1.1. Общая структурная схема программируемых

логических контроллеров

Рассмотрим основные элементы контроллеров, приведенные на рис. 1.1.

Процессор. Основная часть любой ЭВМ, его функция – выполнять команды, записанные в памяти. Тип процессора не является основной характеристикой контроллеров (в отличие от персональных компьютеров), поскольку обычно от контроллеров не требуется очень высокого быстродействия; часто тип процессора даже не указывается в документации к контроллеру. Однако в последнее время развиваются так называемые SCADA-системы (системы контроля управления и диспетчеризации), которые предъявляют новые требования к контроллерам, в частности, поддержку современных сетевых технологий (Ethernet) и многозадачность. Поэтому в современных контроллерах могут применятся достаточно совершенные процессоры, например, Intel Pentium III и др. В то же время, в более простых контроллерах, работающих без связи с другими контроллерами и компьютерами, могут использоваться и более простые процессоры, например, Z80.

Память (ОЗУ и ПЗУ). Функция памяти – хранить программу и данные. Обычно контроллеры не имеют большого объема памяти, поскольку они работают под управлением упрощенных узкоспециализированных операционных систем с довольно скромными запросами. Программа контроллера также не занимает большого объема. Следовательно, контроллеры не имеют жестких дисков (в них нет никакой необходимости). Чтобы контроллер не «забывал» программу при выключении питания, память может быть энергонезависимой (EPROM, Erasable Programmable Read Only Memory), это альтернатива жестким дискам, более простая и дешевая, но с малой емкостью. Объем памяти не является важной характеристикой контроллера. Он может быть, например, несколько килобайт (у персональных компьютеров объем памяти составляет порядка сотен мегабайт, т.е. в сотни тысяч раз больше).

Клавиатурно-дисплейный модуль (КДМ). Предназначен для управления контроллером, ввода команд, программирования, мониторинга. Не особенно удобен для выполнения перечисленных функций, так как обычно контроллеры могут подключаться к компьютерам, выполняющим те же функции. Как правило, КДМ применяется для настройки контроллера «на месте», т.е. довольно нечасто. По этой причине КДМ обычно небольшой и простой.

Порты ввода-вывода. Они служат для преобразования двоичной информации в какие-либо физические сигналы (как правило, в дискретные электрические) и обратно. Порты являются неотъемлемой частью любого микропроцессорного устройства, а контроллере они выполняют функцию ввода данных и выдачи управляющих воздействий. Внешние устройства, как правило, не подключаются к шине контроллера напрямую, поскольку их уровни сигналов обычно не совпадают с уровнями сигналов шины контроллера (лог.0 – 0,2 В, лог.1 – 5 В). Кроме того, подключение устройств к шине без гальванической развязки небезопасно, так как любые виды помех (из-за наводок, пробоев изоляции, коротких замыканий и т.д.) поступали бы напрямую в контроллер, что приводило бы к его неустойчивой работе и даже к выходу из строя. Поэтому порты ввода-вывода обеспечивают, во-первых, необходимое преобразование уровней сигналов, и во-вторых, гальваническую развязку.

Дискретные входные сигналы, как правило, несут информацию о замыкании или размыкании какого-либо контакта (рис. 1.2).

 

Рис. 1.2. контроллер с двумя дискретными входами

и с двумя релейными выходами

 

Дискретные выходные сигналы представляют собой управляемые контроллером «ключи», способные замыкать или размыкать цепь (рис. 1.2). Дискретные выходы могут быть релейными или транзисторными. Транзисторные выходы обладают высоким быстродействием и бесшумностью. Релейные выходы достаточно медленные и срабатывают с характерными для реле громкими «щелчками», однако они могут коммутировать цепи с большим напряжением, например, 220 В.




Поделиться с друзьями:


Дата добавления: 2015-04-29; Просмотров: 5185; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.