Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Работа однофазной мостовой схемы выпрямления 1 страница




1. Неуправляемая схема выпрямления

Пусть имеем неуправляемую мостовую двухтактную схему рис.1.

Рис.1. Двухполупериодная мостовая схема

Как видно из рис.1 вентили включаются так, что в первом полупериоде ток протекает через вентили 1 и 3, а во втором полупериоде ток протекает через вентили 2 и 4.

Форма кривых выпрямленного, фазных и анодных токов зависит от индуктивного сопротивления . Кривые токов и напряжений при приведены на осях 2,3,4,5 и 6 рис.2.

Аналогично рассмотренной ранее однотактной схеме имеем

, .

Амплитуда обратного напряжения

.

Ток вторичной обмотки трансформатора равен

.

Поэтому действующие значения токов обеих обмоток равны:

, .

Мощность первичной и вторичной обмоток, а также типовая мощность трансформатора

.

Рис.2. Кривые токов и напряжений двухтактной схемы

Так как кривые анодных токов представляют полусинусоиды, они содержат постоянные составляющие, первые гармоники и гармоники с четными порядковыми номерами

Кривые токов при

приведены на осях 7, 8 и 9 рис.2.

Действующие значения токов первичной и вторичной обмоток при

.

Мощность трансформатора

.

Амплитуда анодного тока вентиля

.

2. Работа однофазной мостовой схемы с углом регулирования

Диаграммы токов и напряжений на элементах будут такими же, как и для однофазного двухполупериодного выпрямителя со средней точкой.

Отличие заключается только в том, что амлитуда обратного напряжения на вентиле в мостовом выпрямителе будет в 2 раза меньше, чем в двухполупериодном нулевом выпрямителе.

При активной нагрузке работа схемы будет характеризоваться следующими основными соотношениями:

Рис.3. Однофазный мостовой выпрямитель

При активной нагрузке работа схемы будет характеризоваться следующими основными соотношениями:

  • среднее значение выпрямленного напряжения

;

  • максимальное значение обратного напряжения на вентилях

;

  • максимальное значение тока вентиля

;

  • среднее значение тока вентиля

;

  • действующие значения токов, проходящих через вентили и обмотки трансформатора

; ; .

Однофазная мостовая схема, работающая с углом , имеет такие же формы токов и напряжений на ее элементах, как и в однофазном двухполупериодном выпрямителе со средней точкой.

Среднее значение выходного напряжения:

  • при активной нагрузке (рис.2, кривая 1)

,

где – среднее значение выпрямленного напряжения на выходе схемы при угле ;

  • при активно-индуктивной нагрузке, когда или имеет такое значение, что выпрямленный ток непрерывен (рис.2, кривая 2),

.

Максимальные значения напряжений на вентилях:

  • при активной нагрузке

, ;

  • при активно-индуктивной нагрузке

, .

Максимальное значение токов вентилей при активной нагрузке

.

3. Активно-индуктивная нагрузка с углом открытия больше нуля,

Наличие в цепи нагрузки индуктивности существенно изменяет характер электромагнитных процессов в схеме. Так, после начала работы выпрямителя нарастание тока в нагрузке будет происходить постепенно и тем медленнее, чем больше постоянная времени .

При наличии индуктивности выпрямленный ток становится более сглаженным и не успевает доходить до нуля в моменты, когда выпрямленное напряжение становится равным нулю.

При увеличении индуктивности или частоты переменной составляющей выпрямленного напряжения пульсации выпрямленного тока уменьшаются, а при значениях , равных 5-10 и более, расчетные соотношения в схеме будут незначительно отличатся от случая, когда или (). В этом случае можно считать, что вся переменная составляющая выпрямленного напряжения выделяется на индуктивности , а постоянная – на сопротивлении .

Несмотря на то, что управляющие импульсы поступают на вентили с задержкой на угол относительно моментов их естественного включения (), длительность протекания тока через каждый вентиль остается равной половине периода напряжения питающей сети.

При ток в цепи нагрузки идеально сглажен, а токи вентилей имеют прямоугольную форму, но в отличие от схемы, работающей с углом , прямоугольники токов будут сдвинуты относительно выпрямленного напряжения на угол . Сдвиг тока относительно напряжения на угол приводит к появлению в выпрямленном напряжении отрицательных участков, что вызывает снижение его среднего значения (рис.4).

Рис.4. Диаграммы токов и напряжений двухполупериодного выпрямителя при активно-индуктивной нагрузке и ()

Учитывая, что форма выпрямленного напряжения повторяется в интервале углов от до , среднее значение выпрямленного напряжения можно найти по формуле

(1)

Согласно (1) среднее значение выпрямленного напряжения становится равным нулю при . В этом случае в выпрямленном напряжении площади положительного и отрицательного участков равны между собой и постоянная составляющая отсутствует [1, 2].

Регулировочная характеристика для активно-индуктивной нагрузки показана на рис.5 кривая 2.

Рис.5. Регулировочные характеристики однофазного двухполупериодного выпрямителя: 1 – при активной нагрузке; 2 – при активно-индуктивной нагрузке

Если величина невелика и такова, что энергии, запасенной в индуктивности на интервале, когда , оказывается недостаточно для обеспечения протекания тока в течение половины периода, то вентиль, проводящий этот ток, выключится раньше, чем будет подан отпирающий импульс на другой вентиль, т.е. раньше момента, определяемого углом . Такой режим работы схемы при активно-индуктивной нагрузке называется режимом с прерывистым выпрямленным током (рис.6).

Рис.6. Диаграммы токов и напряжений двухполупериодного выпрямителя при режиме прерывистых токов

При одинаковых значениях угла? среднее значение выпрямленного напряжения в режиме с прерывистым током будет больше, чем в режиме с непрерывным током, благодаря уменьшению отрицательного участка в кривой выпрямленного напряжения, но меньше, чем при работе выпрямителя на активную нагрузку.

Поэтому в режимах с прерывистым током регулировочные характеристики будут находиться между кривыми 1 и 2 в заштрихованной области, указанной на рис.5.

Режим работы схемы, когда ток в вентилях спадает до нуля точно в момент включения очередного вентиля, называется граничным.

Очевидно, что чем больше угол?, тем больше должна быть индуктивность , чтобы обеспечить режим работы схемы с непрерывным током . Индуктивность, обеспечивающая при заданных параметрах–схемы граничный режим работы, называют критической.

При прерывистом токе и постоянной нагрузке трансформатор, вентили, коллектор работают в более тяжелом режиме, так как при одном и том же значении выпрямленного тока действующее значение токов в элементах схемы увеличивается. Поэтому в мощных выпрямителях, работающих с широким диапазоном изменения угла , индуктивность обычно выбирают из условия обеспечения непрерывности выпрямленного тока.

Граница перехода к непрерывному выпрямленному току зависит от соотношения

,

характеризующегося углом

.

Пока

,

режим непрерывен, а при

ток имеет прерывистый характер.

В режиме непрерывного тока постоянная составляющая выпрямленного напряжения

.

Ток вентиля в прерывистом режиме

.

Из последнего выражения видно, что когда , ток , т.е. на границе перехода от прерывистого к непрерывному режиму угол [1, 2].

Обозначив угол протекания тока через вентиль равным и подставляя в выражение

,

получим уравнение

,

дающее зависимость между углами и .

Постоянная составляющая выпрямленного напряжения

.

Постоянная составляющая выпрямленного тока в обоих случаях

.

Однофазные мостовые схемы из-за больших пульсаций выпрямленного напряжения применяют в основном в электроустановках малой мощности.

Рис. 2. Трехфазная нулевая схема выпрямления (а). Графики напряжений (б), токов (в) и обратного напряжения на диоде (г)

Трехфазная нулевая схема выпрямления (рис. 2, а) состоит из трех диодов. Анодные выводы диодов обычно подключают к обмоткам трансформатора, а катодные выводы — к общей точке. Нагрузку включают между нулевой точкой трансформатора и общей точкой диодов. При активной нагрузке R н ток через каждый диод протекает в течение 1/3 периода переменного тока, когда напряжение в одной фазе трансформатора больше, чем в других, а выпрямленный ток проходит по нагрузке непрерывно (рис. 2). В момент пересечения положительных значений напряжений каждой фазы трансформатора в точках а, 6 и, (рис. 2, б), называемых точками естественной коммутации диодов, ток прекращает проходить в одном диоде и начинает протекать через другой диод. Трехфазная нулевая схема позволяет получать выпрямленное напряжение более сглаженной формы с переменной составляющей Ud, меньшей амплитуды, чем однофазная мостовая. Наибольшее обратное напряжение max, поступающее на закрытый диод, равно амплитудному значению линейного напряжения (рис. 2, в).
Недостаток трехфазной нулевой схемы — прохождение через вторичные обмотки тока (iа2, iЬ2 и iс2) только в одном направлении, что создает магнитный поток подмагничивания, вызывающий дополнительный нагрев трансформатора. Поэтому схему широко применяют только в выпрямительных установках с трансформаторами, ток вторичной обмотки которых обычно не превышает 100 А.
Трехфазная мостовая схема выпрямления (рис. 5.8, а) состоит из шести диодов, которые образуют две группы: с общим катодным выводом (V1, V3 и V5) и общим анодным выводом (V2, V4 и V6). Диоды подключаются непосредственно к сети или через трансформатор, первичные и вторичные обмотки которого соединены в звезду или треугольник.
В нечетной группе (V1, V3 и V5) в течение каждой трети периода работает тот диод, у которого выше потенциал вывода (рис. 3, б), например, интервал а —6 для диода V1. В четной группе в этот интервал времени работает тот диод, у которого катодный вывод имеет наиболее отрицательный потенциал (интервал а для диода V6 и 6 для диода V2) по отношению к общей точке анодных выводов. Таким образом, в интервале а—„ (см. рис. 3, 6) ток гн проходит от фазы а трансформатора через диод V1, нагрузку R н, диод V6, к фазе b трансформатора (см. рис. 3, а). В интервале „—6 (см. 3, 6) ток проходит через диод V1, нагрузку R н и диод V2 (отмечено пунктирной линией).

Рис. 3. Трехфазная мостовая схема выпрямления (а). Графики напряжений и токов (б)

В трехфазной мостовой схеме в любой момент времени при активной нагрузке ток проходит через два диода — один из нечетной, а другой — из четной группы. Диоды нечетной группы коммутируются в момент пересечения положительных участков синусоид (точки а, 6, в), а четной группы — в момент пересечения отрицательных участков (точки г %, А). В результате при наличии двух групп получают шестифазное выпрямление (кривая Ud0, см. рис. 3, 6).
Достоинствами трехфазных мостовых схем, широко применяемых в выпрямительных устройствах, являются: небольшой коэффициент пульсаций выпрямленного напряжения; малое обратное напряжение; малая габаритная мощность трансформаторов; отсутствие вынужденного подмагничивания, так как ток во вторичной обмотке трансформатора изменяет свое направление.

Основные технические характеристики различных схем выпрямления приведены в табл. 2.

Основные технические характеристики схем выпрямления

Схема выпрямления Число фаз выпрямления, m Соотношение между электрическими параметрами схем выпрямления Коэффициент пульсации выпрямленного напряжения q = = 2/(m2 — — 1)
Выпрямленным и фазным напряжениями, Максимальным обратным и выпрямленным напряжениями, Uобр max/ Фазным и выпрямленным токами, VId Мощностью трансформатора и мощностью преобразователя,
Однофазная мостовая   0,9 1,57 1,11 1,23 0,67
Трехфазная нулевая   1,17 2,09 0,585 1,37 0,25
Трехфазная мостовая   2,34 1,045 0,817 1,05 0,057
Примечание. I2 — ток вторичной обмотки трансформатора.

Управляемые выпрямители позволяют преобразовать переменный ток в постоянный и плавно изменять выпрямленное напряжение от нуля до номинального значения.
В настоящее время в электроприводах постоянного тока и в системах возбуждения синхронных двигателей основной элементной базой при построении управляемых выпрямителей являются тиристоры.
Тиристоры — не полностью управляемые полупроводниковые приборы, обладающие двумя устойчивыми состояниями равновесия: открытым (проводящим ток) и закрытым (не проводящим тока). Тиристор (рис. 4, а), имеющий три электрода (анодный вывод А, катодный К и управляющий электрод У), начинает проводить ток в том случае, если к анодному выводу (по отношению к катодному выводу) приложен положительный потенциал и одновременно к управляющему электроду подается положительный управляющий сигнал. При приложении к анодному выводу положительного потенциала сопротивление тиристора будет зависеть от управляющего тока. При отсутствии управляющего сигнала (1у = 0) сопротивление тиристора велико. При появлении управляющего тока (1у = 1ун) тиристор перейдет в открытое состояние и проводимость его будет высокой.



Рис. 4. Однополупериодная управляемая схема выпрямления (а). Графики напряжения на нагрузке (б), управляющих импульсов (в), тока нагрузки (г), напряжения анод-катод UAK (%)

Тиристор отличается от транзистора тем, что ток управления только открывает, но не закрывает его. Закрывается тиристор при приложении к анодному выводу отрицательного напряжения.
Для управления тиристором используют систему импульсно-фазного управления (СИФУ), которая формирует управляющий импульс нужной формы и мощности, а также осуществляет сдвиг по фазе импульса относительно напряжения сети.
Рассмотрим работу тиристора, подключенного к однофазной сети на активную нагрузку (рис. 4, а). Предположим, что управляющий импульс в интервале со t0 — со t1 отсутствует (1у = 0). В этом случае тиристор обладает большим сопротивлением в прямом направлении и ток через нагрузку Rн практически не проходит (рис. 4, 6).
После подачи управляющего импульса при номинальном токе управления (1у = 1у н) тиристор открывается (рис. 4), т.е. его сопротивление в прямом направлении снижается. Под действием напряжения сети Ц. через нагрузку Лн проходит ток гн (рис. 4, г), который зависит от напряжения сети и сопротивления резистора (интервал rot1 — rot2). При отрицательном напряжении на анодном выводе (интервал rot2 — rot3) тиристор обладает высоким сопротивлением и ток через него не проходит. В этом случае к тиристору прикладывается обратное напряжение (рис. 4, %). На рис. 4, 6, % приняты обозначения; U, — напряжение на нагрузке; UAK — напряжение анод-катод тиристора; UyK — управляющее напряжение между управляющим электродом и катодом.
Для изменения среднего значения выпрямленного напряжения Ud необходимо сдвинуть по фазе управляющий импульс. Так, для уменьшения выпрямленного напряжения необходимо управляющий импульс подавать с отставанием на угол ак = rot,, по отношению к точке естественной коммутации тиристора (см. рис. 4,,). Сдвиг по фазе между точкой естественной коммутации тиристора и моментом подачи управляющего импульса называется углом регулирования а.
В электроприводах находят применение также сдвоенные тиристоры, называемые симмисторами, которые обладают свойствами встречно-параллельно соединенных тиристоров, но имеют лишь один управляющий электрод.
В трехфазной мостовой схеме, в которой вместо диодов включены тиристоры (рис. 5, а), управляющие импульсы
— U^, поступающие от СИФУ, должны соответствующим образом сфазированы с напряжением трансформатора (сети), т.е. подаваться в нужные моменты времени. Сдвиг импульсов относительной базовой точки происходит в сторону отставания. За базовые необходимо брать точки а, 6,, и „, %, А (рис. 5, 6) естественного отпирания диодов. Если управляющие импульсы подавать на тиристоры в базовых точках, то получим наибольшее выпрямленное напряжение Ud0. При подаче управляющих импульсов с отставанием по отношению к точке естественного отпирания на угол а (см. рис. 5, 6) тиристоры открываются позже, а среднее выпрямленное напряжение Ud ср будет меньше, чем наибольшее выпрямленное Ud0. Среднее выпрямленное напряжение ТП определяется по формуле

Ud ср = U0*cos α
где α — угол регулирования ТП.


Рис. 5. Трехфазная мостовая схема управляемого выпрямителя (а). Графики напряжений (б)

Поскольку трехфазная мостовая схема имеет две группы тиристоров, а ток в любой момент протекает минимум через два тиристора, СИФУ вырабатывает сдвоенные импульсы (см. рис. 5, 6), сдвинутые относительно друг друга на 60 электрических градусов. В э том случае имеет место одновременная подача импульсов в тиристоры двух различных групп (V1 и V6, V1 и V2, V3 и V2 и т.д.). Наличие двух групп тиристоров обеспечивает шестифазное выпрямление (кривая Ud рис. 5, 6).

Ос

новными элементами в любой схеме выпрямления являются вентили, которые пропускают ток по электрической цепи только в одном направлении. Вентили могут включаться по различным схемам, в зависимости от этого изменяется форма выпрямленного тока и напряжения. Рассмотрим несколько схем выпрямления при работе выпрямителя на активную нагрузку без учета прямого падения напряжения и обратного тока вентилей, активного сопротивления и индуктивности обмоток трансформатора.

Мгновенное напряжение на выходе выпрямителя и приложенное к нагрузке называют мгновенным выпрямленным напряжением и0. Мгновенный ток, потребляемый нагрузкой, называют мгновенным выпрямленным током /о- Среднее выпрямленное напряжение выпрямителя обозначают II о, а средний выпрямленный ток — /о.

Схема однополупериодного выпрямления. Схема (рис. 104, о),состоит из одного вентиля В, включенного последовательно с нагрузкой А?„ в цепь вторичной обмотки трансформатора. При синусоидальном напряжении и{ на первичной обмотке трансформатора напряжение и2 на вторичной обмотке также будет синусоидальным (рис. 104,6). В течение положительной полуволны начало вторичной обмотки (на схеме обозначено точкой) имеет более высокий потенциал, чем ее конец, напряжение приложено к вентилю в проводящем направлении. Вентиль проводит ток /о, а напряжение ий на нем равно нулю. Напряжение и0 на нагрузке равно напряжению вторичной обмотки трансформатора. Под действием этого напряжения по нагрузке будет протекать ток г'о, мгновенное значение которого определяется соотношением /о= но/Ян- Ток /о изменяется в фазе с напряжением и0 и поэтому может быть изображен той же кривой с измененным масштабом (рис. 104, в). Когда вторичное напряжение изменит направление, вентиль запирается и ток через него становится равным нулю. При этом все напряжение вторичной обмотки будет приложено к вентилю в обратном направлении (рис. 104, г). Когда этот полупериод закончится, ток вновь начнет протекать через вентиль. Таким образом, рассмотренная схема выпрямляет однофазный ток через каждый полупериод.

Схема двухполупериодного выпрямления с нулевым выводом. Данная схема по существу представляет собой объединение двух рассмотренных схем однополупериодного выпрямления. В схеме с нулевым выводом (рис. 105, а) включены две вторичные обмотки трансформатора, соединенные между собой через нулевой вывод, в который включено активное сопротивление /?„. Кроме того, в цепях каждой обмотки находится по одному вентилю, которые присоединены в общей точке к сопротивлению

К первичной обмотке трансформатора подводится синусоидальное напряжение и\. В первую половину периода, когда напряжение ик положительно, а ыв — отрицательно, ток под действием напряжения ик протекает через вентиль /; во вторую половину периода, когда положительным становится напряжение «в, а «д — отрицательным, ток протекает через вентиль 2 под действием

положительного напряжения ив. Таким образом, ток и напряжение выпрямляются уже в оба полупериода, но пульсация их остается по-прежнему от нуля до максимального значения (рис. 105, б, в, г, д, е, ж). Величины обратных напряжений на выпрямителях достигают удвоенного максимального фазного напряжения вторичной обмотки трансформатора.

Трехфазная схема выпрямления с нулевым выводом. На электроподвижном составе для питания вспомогательных цепей применяют трехфазную схему выпрямления. Простейшей трехфазной схемой выпрямления является трехфазная схема с нулевым выводом (рис. 106, о). Питание трехфазной схемы осуществляется от трехфазной сети через трехфазный трансформатор Т. Вторичные обмотки трансформатора соединены в «звезду». Каждая фаза работает поочередно.

В момент /о (рис. 106, б) из трех напряжений их, ив, ис положительным является напряжение фазы А. Напряжение и0 на нагрузке /?„ равно фазному напряжению иЛ. Такое положение будет сохраняться до момента 1\, когда «Л = ив. До этого момента тока в фазе В нет. Даже когда напряжение фазы В, пройдя




Поделиться с друзьями:


Дата добавления: 2015-04-29; Просмотров: 1197; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.047 сек.