КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Геометрическое определение вероятности
Пусть производится испытание, состоящее в бросании на удачу точки на некоторую область пространства . Все точки области «равноправны» в отношении попадания в нее брошенной случайно точки. Требуется определить вероятность события , состоящего в попадании точки на некоторую область . Геометрическое определение вероятности. Геометрической вероятностью события называются отношения меры области , благоприятствующей появлению события , к мере области . Точное определение меры множества приведено в приложении II. Здесь мы отметим, что в одномерном случае мера отрезка равна его длине, в двумерном случае, мера фигуры равна ее площади, в трехмерном пространстве мера тела равна его объему. Пример 1. На участке между двумя пунктами, расположенными соответственно на 40-м и 70-м километрах телефонной линии, произошел обрыв провода. Определить вероятность того, что обрыв произошел между 50-м и 55-м километрами линии. Предполагается, что вероятность обрыва провода на любом отрезке телефонной линии между рассматриваемыми пунктами пропорциональна длине этого отрезка и не зависит от его расположения на линии. Решение. Для решения задачи воспользуемся геометрическим определением вероятности. Обозначим через событие, состоящее в том, что обрыв произошел между 50-м и 55-м километрами телефонной линии. Так как мера равна длине участка, на котором произошел обрыв, т.е , а мера равна длине телефонной линии между рассматриваемыми пунктами, т.е. , то на основании геометрического определения вероятности находим . Пример 2. Два партнера условились встретиться между 17 и 18 часами. Причем каждый является на место встречи в любой момент между 17 и 18 часами, ждет другого в течении 30 мин и уходит, если встреча не состоялась. Найти вероятность того, что назначенная встреча состоится. Решение. Для решения задачи воспользуемся геометрическим определением вероятности.
, которая представляет собой квадрат , со стороной равной 1, поэтому (ед. мас.)2. Событие – встреча двух партнеров состоится, если модуль разности между и не превзойдет 0,5 часа, т.е. , откуда . С геометрической точки зрения, решением последнего неравенства являются точки, лежащие внутри заштрихованной полосы (рис 1). Найдем площадь области . Поэтому вероятность встречи двух партнеров определяется по формуле .
Дата добавления: 2015-04-30; Просмотров: 353; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |