КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Контроль надежности методом двухкратной выборки
Одновыборочный контроль надежности Статистические методы контроля надежности массовой продукции
Среди планов испытаний выборочного контроля выделяют: – планы типа однократной выборки, – планы типа двукратной выборки, – последовательный контроль надежности.
В планах типа однократной выборки из общего количества N выпускаемых изделий выбирается n изделий и каждое подвергается контролю на надежность. Находится число дефектных изделий среди n изделий. Число дефектных изделий в выборке n – d(n). Приемочное число с – граничное число дефектных изделий определяется на базе оперативной характеристики. Если d(n) < c, то партия принимается, а если d(n) > c – партия бракуется. Если выполняется n ≥ 0,1,…,N, то можно принимать биноминальный закон распределения. Строится оперативная характеристика П(q), где
Биноминальный закон распределения: где С – приёмочное число; Сni – число сочетаний из n по i.
В планах типа двукратной выборки из общего числа изделий N выбирается n1 изделий (n1 > N). Эта выборка подвергается контролю на надежность и подсчитывается число дефектных изделий в n1. Если d(n1) ≤ c1, то партия принимается, d(n1) > c2 – партия бракуется. c1 < d(n1) ≤ c2 – зона неопределенности. Берется вторая выборка n2, такая, что (n1 + n2 < N) и подвергается контролю на надежность. Если d(n1 + n2) ≤ c3 – партия принимается, d(n1 + n2) > c3 – партия бракуется. Возможен вариант, когда c2 = c3. Оперативная характеристика П(q) = Ра1 + Ра2, где Ра1 и Ра2 –несовместимые события (рис. 3.3). Событие а1: d(n1) < c1; а2: d(n1) > c1 Партия изделий будет принята, если наступит одно из несовместных событий: – а1: для первой выборки выполняется условие – а2: для двух последних выборок выполняются условия Тогда оперативная характеристика , где Ра1 – вероятность события а1, Ра2 – вероятность события а2. Ра1 вычисляется по формуле одновыборочного контроля, а Ра2
Графическая иллюстрация плана двукратной выборки
Дата добавления: 2015-04-30; Просмотров: 1519; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |