КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Коэффициенты прямых и полных материальных затрат
Переходя к анализу модели межотраслевого баланса, необходимо прежде всего рассмотреть основные свойства матрицы коэффициентов прямых материальных затрат А. Коэффициенты прямых затрат по определению являются неотрицательными, следовательно, матрица А в целом может быть названа неотрицательной: А > 0. Так как процесс воспроизводства нельзя было бы осуществлять, если бы для собственного воспроизводства в отрасли затрачивалось большее количество продукта, чем создавалось, то очевидно, что диагональные элементы матрицы А меньше единицы: a ij< 1. Система уравнений межотраслевого баланса является отражением реальных экономических процессов, в которых содержательный смысл могут иметь лишь неотрицательные значения валовых выпусков; таким образом, вектор валовой продукции состоит из неотрицательных компонентов и называется неотрицательным: X ≥ 0. Встает вопрос, при каких условиях экономическая система способна обеспечить положительный конечный выпуск по всем отраслям. Ответ на этот вопрос связан с понятием продуктивности матрицы коэффициентов прямых материальных затрат. Будем называть неотрицательную матрицу А продуктивной, если существует такой неотрицательный вектор Х ≥ 0, что Х > АХ (6.11) Очевидно, что условие (6.11) означает существование положительного вектора конечной продукции Y > 0 для модели межотраслевого баланса (6.6). Для того чтобы матрица коэффициентов прямых материальных затрат А была продуктивной, необходимо и достаточно чтобы выполнялось одно из перечисленных ниже условий: 1) матрица (Е - А) неотрицательно обратима, т.е. существует обратная матрица ; 2) матричный ряд сходится, причем его сумма равна обратной матрице ; 3) наибольшее по модулю собственное значение l матрицы А, т.е. решение характеристического уравнения , строго меньше единицы; 4) все главные миноры матрицы (Е - А), т.е. определители матриц, образованные элементами первых строк и первых столбцов этой матрицы, порядка от 1 до п, положительны. Более простым, но только достаточным признаком продуктивности матрицы А является ограничение на величину ее нормы, т.е. на величину наибольшей из сумм элементов матрицы А в каждом столбце. Если норма матрицы А строго меньше единицы, то эта матрица продуктивна; повторим, что данное условие является только достаточным и матрица А может оказаться продуктивной и в случае, когда ее норма больше единицы. Наибольший по модулю корень характеристического уравнения, приведенного в условии 3) продуктивности матрицы А (обозначим его через l*), может служить оценкой общего уровня коэффициентов прямых материальных затрат, а, следовательно, величина 1 - l*характеризует остаток после затрат, т.е. продуктивность. Чем больше 1 - l*, тем больше возможности достижения других целей, кроме текущего производственного потребления. Другими словами, чем выше общий уровень коэффициентов матрицы А, тем больше наибольшее по модулю собственное значение l* и ниже уровень продуктивности, и наоборот, чем ниже общий уровень коэффициентов матрицы А, тем меньше наибольшее по модулю собственное значение и выше продуктивность. Перейдем к анализу матрицы коэффициентов полных материальных затрат, т.е. матрицы В = (Е - А)-1. Согласно определению 6.2 из предыдущего параграфа коэффициент этой матрицы показывает, сколько всего нужно произвести продукции i -й отрасли, чтобы получить единицу конечной продукции j-й отрасли. Дадим другое определение коэффициента полных материальных затрат исходя из того, что кроме прямых затрат существуют косвенные затраты той или иной продукции при производстве продукции данной отрасли. Рассмотрим в качестве примера формирование затрат электроэнергии на выпуск стального проката, при этом ограничимся технологической цепочкой "руда - чугун - сталь - прокат". Затраты электроэнергии при получении проката из стали будут называться прямыми затратами, те же затраты при получении стали из чугуна будут называться косвенными затратами 1-го порядка, а затраты электроэнергии при получении чугуна из руды будут называться косвенными затратами электроэнергии на выпуск стального проката 2-го порядка и т.д. В связи со сказанным выше имеет место следующее определение. Определение 6.3. Коэффициентом полных материальных затрат cij называется сумма прямых затрат и косвенных затрат продукции i -й отрасли для производства единицы продукции j- й отрасли через все промежуточные продукты на всех предшествующих стадиях производства. Если коэффициент косвенных материальных затрат k -го порядка обозначить через , то имеет место формула (6.12) а если ввести в рассмотрение матрицу коэффициентов полных материальных затрат С = (с ij) и матрицы коэффициентов косвенных материальных затрат различных порядков , то поэлементную формулу (6.12) можно записать в более общем матричном виде: (6.13) Исходя из содержательного смысла коэффициентов косвенных материальных затрат можно записать ряд матричных соотношений: с использованием которых матричная формула (6.13) может быть переписана в следующем виде: (6.14) Если матрица коэффициентов прямых материальных затрат А является продуктивной, то из условия 2) продуктивности существует матрица В = (Е - А)-1, являющаяся суммой сходящегося матричного ряда: (6.15) Из сопоставления соотношений (6.14) и (6.15) устанавливается следующая связь между двумя матрицами коэффициентов полных материальных затрат: или, в поэлементной записи: Данная связь определяет экономический смысл различия между коэффициентами матриц В и С: в отличие от коэффициентов матрицы С, учитывающих только затраты на производство продукции, коэффициенты матрицы В включают в себя кроме затрат также саму единицу конечной продукции, которая выходит за сферу производства. Перейдем теперь к вычислительным аспектам решения задач на основе модели межотраслевого баланса. Основной объем расчетов по этой модели связан с вычислением матрицы коэффициентов полных материальных затрат В. Если матрица коэффициентов прямых материальных затрат А задана и является продуктивной, матрицу В можно находить либо по формулам обращения матриц, рассматриваемым в курсе матричной алгебры (некоторые из этих формул рассмотрены в гл. 2), либо приближенным способом, используя разложение в матричный ряд (6.15). Рассмотрим первый способ нахождения матрицы В. Находят матрицу (Е - А), а затем, применяя один из прямых методов обращения невырожденных матриц, вычисляют матрицу (Е - А)-1. Одним из наиболее употребительных методов обращения матриц является метод Жордана. Часто применяется также метод, основанный на применении формулы матричной алгебры (6.16) где в числителе матрица, присоединенная к матрице (Е - А), элементы которой представляют собой алгебраические дополнения для элементов транспонированной матрицы (Е - А)', а в знаменателе - определитель матрицы (Е - А). Алгебраические дополнения в свою очередь для элемента с индексами i и j получаются умножением множителя (-1) i+j на минор, получаемый после вычеркивания из матрицы i -й строки и j -го столбца. При втором способе вычисления матрицы коэффициентов полных материальных затрат используется формула (6.15). Обязательным условием корректности этих расчетов является условие продуктивности матрицы А, и при расчетах ограничиваются учетом косвенных материальных затрат до некоторого порядка включительно, например до 2-го, 3-го порядков. В этом способе используется процедура умножения квадратных матриц с их последующим сложением, и коэффициенты полных материальных затрат получаются с известным приближением (с недостатком). Пример 6.1. Для трехотраслевой экономической системы заданы матрица коэффициентов прямых материальных затрат и вектор конечной продукции: Найти коэффициенты полных материальных затрат и вектор валовой продукции, заполнить схему межотраслевого материального баланса. 1. Определим матрицу коэффициентов полных материальных затрат по второму (приближенному) способу, учитывая косвенные материальные затраты до 2-го порядка включительно. Запишем матрицу коэффициентов косвенных затрат 1-го порядка: матрицу коэффициентов косвенных затрат 2-го порядка: Таким образом, матрица коэффициентов полных материальных затрат приближенно равна 2. Определим матрицу коэффициентов полных материальных затрат с помощью формул обращения невырожденных матриц (первый способ): а) находим матрицу (Е - А): б) вычисляем определитель этой матрицы: в) транспонируем матрицу (Е - А): г) находим алгебраические дополнения для элементов матрицы таким образом, присоединенная к матрице (Е - А) матрица имеет вид д) используя формулу (6.16), находим матрицу коэффициентов полных материальных затрат: Как отмечено выше, элементы матрицы В, рассчитанные но точным формулам обращения матриц, больше соответствующих элементов матрицы, рассчитанной по второму приближенному способу без учета косвенных материальных затрат порядка выше 2-го. 3. Найдем величины валовой продукции трех отраслей (вектор X), используя формулу (6.8'): 4. Для определения элементов первого квадранта материального межотраслевого баланса воспользуемся формулой, вытекающей из формулы (6.4): хij = aij Хj. Из этой формулы следует, что для получения первого столбца первого квадранта нужно элементы первого столбца заданной матрицы А умножить на величину X 1 = 775,3; элементы второго столбца матрицы А умножить на X 2 = 510,1; элементы третьего столбца матрицы А умножить на X, = 729,6. Составляющие третьего квадранта (условно чистая продукция) находятся с учетом формулы (6.1) как разность между объемами валовой продукции и суммами элементов соответствующих столбцов найденного первого квадранта. Четвертый квадрант в нашем примере состоит из одного показателя и служит, в частности, для контроля правильности расчета: сумма элементов второго квадранта должна в стоимостном материальном балансе совпадать с суммой элементов третьего квадранта. Результаты расчета представлены в табл. 6.2; незначительные расхождения по строкам таблицы объясняются погрешностью из-за округления чисел. Таблица 6.2
Дата добавления: 2015-04-30; Просмотров: 698; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |