КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нервная ткань. Она содержит высокоспециализированные нервные клетки
Она содержит высокоспециализированные нервные клетки. Способные воспринимать раздражители, в ответ они способны формировать нервный импульс, передавать его по отросткам другим нервным и рабочим клеткам, которые отвечают специфической реакцией, адекватной раздражителю. Имеются глиальные клетки, которые создают условия для функционирования нервных клеток. Из нервной пластинки развиваются: - макроглия: 1)эпендимоциты; 2) астроциты; 3)олигодендроциты. - микроглия: развивается из мезенхимы. Нервная ткань закладывается на 3-й неделе эмбриогенеза, когда образуется нервная пластинка. Она превращается в нервную трубку. В ее стенке во внутреннем слое находятся стволовые вентрикулярные клетки. Они пролиферируют и перемешаются кнаружи. Там продолжается деление части клеток, и они дифференцируются на нейробласты (из них образуются нервные клетки) и на глиобласты или спонгиобласты (клетки микроглии). В стенке нервной трубки выделяют три слоя: - эпендимный (внутренний); - плащевой (средний) - нейробласты, формирующие т.н. серое вещество мозга; - краевой (наружный) - белое вещество мозга; В краниальном отделе нервной трубки образуются мозговые пузыри, которые являются источником образования головного мозга (20-24 недель). Из оставшихся отделов нервной трубки формируется спинной мозг. Из краев нервного желобка выселяются клетки, формирующие нервный гребень [расположен между нервной трубкой и эктодермой], из них образуются ганглиозные пластинки, из которых формируются пигментные клетки кожи (миелоциты), периферические нервные узлы, меланоциты кожи, клетки АPUD-системы. Глиоциты. Их в 5-10 раз больше, чем нервных клеток. Они выполняют опорную, стромальную трофическую. Защитную, всасывательную, выделительную функции. Они способны пролиферировать. Эпендимоциты. Это клетки призматической формы, располагаются в I слой, выстилают полости мозга (желудочки) и центральный спинномозговой канал. На верхушке клетки находятся микроворсинки. Они участвуют в выработке спинномозговой жидкости и могут ее всасывать. Базальная часть конической формы, усеченной, переходит в тонкий длинный отросток, который пронизывает все вещество мозга, и на поверхности мозга образуют ограничительную глиальную мембрану. Астроциты. Многоотростчатые клетки. Они подразделяются на: - протоплазматические (находятся в сером веществе мозга). У них многочисленные короткие разветвления, широкие отростки. Часть отростков окружает кровеносные капилляры, участвуют в образовании гематоэнцефалического барьера. Другие отростки направляются к телам нейронов. По отросткам переносятся из крови к нейронам питательные вещества. Они выполняют трофическую, защитную (иммунобиологическая защита) функции, отростки изолируют синапсы; - волокнистые (фиброзные). Располагаются в белом веществе. У них тонкие длинные слабоветвящиеся отростки, которые на концах разветвляются и формируют ограничительные мембраны. Астроциты выполняют стромальную функцию. Олигодендроциты - мелкие клетки с короткими отростками. Они располагаются вокруг тел нейронов и по ходу их отростков, образуют вокруг отростка глиальную оболочку. Без этой оболочки нервный импульсы не проводятся. На периферии они называются мантийными (шванновскими) клетками (иначе, леммоцитами). Микроглия. Относится к макрофагальной системе. Это мелкие клетки с короткими малоразветвленными отростками, светлым ядром. Это подвижные клетки. Они фагоцитируют поврежденные нервные клетки. Они могут развиваться из моноцитов крови. Их количество резко возрастает при повреждении мозга. Нейроны -50 млрд. Отросчатые клетки по форме делятся: - пирамидные; - звездчатые; - корзинчатые; - веретеновидные и т.д. По размеру: -мелкие; -средние; -крупные; -гигантские. По количеству отростков: -униполярные (только у эмбриона) - 1 отросток; - биполярные-2 отростка, встречается редко, в основном в сетчатке глаза; - псевдоуниполярные, в ганглиях, от их тела отходит длинный цитоплазматический вырост, а затем делится на 2 отростка: -многоотростчатые (мультиполярные, преобладают в ЦНС). Тело клетки содержит крупное светлое ядро с I-2 ядрышками, в цитоплазме содержатся все органеллы, особенно канальцы гранулярной ЭПС. Рибосомы образуют скопления - глыбки базофильного вещества по всей цитоплазме, в них идет синтез всех необходимых веществ, которые от тела транспортируются по отросткам. При напряжении идет разрушение глыбок, за счет внутриклеточной регенерации постоянно разрушаются и восстанавливаются. Преобладают дендриты среди отростков, которые разветвляются и образуют дендритное дерево, они образуют синапсы с другими нервными клетками и получают от них информацию: чем больше дендритов, тем мощнее рецепторное поле, тем больше информации. По дендритам распространяются импульсы к телу нейрона. В нервной клетке только 1 аксон (нейрит). В его основании формируется новый импульс действия, который отводится по аксону от тела нейрона. Длина отростков может колебаться от нескольких микрон до 1,5 м. Есть еще нейросекреторные клетки, которые помимо формирования и проведения нервного импульса способны вырабатывать гормоны и выделять их в кровь. Нервные клетки располагаются цепочками, цепочки нервных клеток образуют рефлекторные дуги, которые определяют рефлекторную деятельность человека. По функции нервные клетки подразделяются: - чувствительные (афферентные); - вставочные (кондукторные); - эффекторные (эфферентные). - чувствительные (афферентные) образуют первое звено рефлекторной дуги (спинномозговые узлы), Длинный дендрит идет на периферию и там заканчивается нервным окончанием, а короткий аксон в соматической рефлекторной дуге поступает в спинной мозг. Он первый реагирует на раздражитель и в нем образуется нервный импульс. Вставочные располагаются в спинном и головном мозге; второе звено рефлекторной дуги: передают информацию эффекторным двигательным нервным клеткам, которые передают информацию на рабочие клетки - двигательные мышечные волокна. Короткие разветвленные дендриты и длинный аксон, который достигает скелетное мышечное волокно и через нервно-мышечный синапс передает нервный импульс. Простая соматическая рефлекторная дуга содержит 3 звена и 3 нейрона. У человека преобладают сложные рефлекторные дуги), усложнение происходит за счет увеличения количества вставочных нейронов). Головной и спинной мозг содержит в основном вставочные нейроны. Ведущую роль в образовании и проведении нервного импульса выполняет цитолемма. При действии раздражителя в зоне воздействия происходит инверсия заряда - деполяризация - нервный импульс в виде такого участка и дальше распространяется по цитолемме. Отростки нервных клеток независимо окружены глиальными оболочками и вместе с ним образуют нервные волокна и в нем отросток называется осевым цилиндром. Выделяют миелиновые и безмиелиновые волокна, которые отличаются строением глиальной оболочки. Безмиелиновые нервные волокна устроены достаточно просто. Осевой цилиндр, подходя к глиальной клетке, прогибает ее цитолемму и над ним цитоплазма смыкается, образуя двойную складку - мезаксон. В одной глиальной клетке может быть несколько осевых цилиндров. Это т.н. волокна кабельного типа, причем отростки могут переходить в соседние глиальные клетки. Скорость проведения импульса 1-5 м/с. Такие волокна встречаются во время эмбриогенеза и в постганглионарных волокнах вегетативной нервной системы. Миелиновые нервные волокна толстые, располагаются в соматической нервной системе, которая иннервирует скелетные мышцы. Глиальные клетки (леммоциты) идут последовательно, цепочкой, образуя глиальный тяж, а в центре идет осевой цилиндр (отросток нейрона). Глиальная оболочка содержит: - внутренний миелиновый слои (слои цитолеммы) (завитки Мезаксона) основной, местами между слоями цитолеммы есть расширение и они образуют насечки миелина; - периферический слой содержит ядро и органеллы леммоиита-нейриле.има; - базальная мембрана (толстая). На границе смежных леммоцитов нервное волокно истончается, отсутствует миелиновый слой - узловой перехват (Ранвье) - участки повышенной чувствительности; наиболее уязвимы. Часть волокна, расположенная между соседними перехватами - межузловой сегмент. Скорость проведения нервного импульса составляет 5-120 м/сек. Нервные клетки соединены между собой посредством синапсов. Синапсы бывают разные: аксосоматические, аксодендритические, аксо-аксональные (преимущественно тормозного типа); а также химические и электрические (последние встречаются в организме крайне редко). В синапсе выделяют пресинаптическую и постсинаптическую части. Постсинаптическая часть содержат постсинаптическую мембрану, которая содержит высокоспецифичные белковые рецепторы, реагирующие только на конкретные медиаторы. Между пресинаптической и постсинаптической частями находится синаптическая щель. Нервный импульс доходит до пресинаптической части и активирует синоптические пузырьки. Синаптический пузырек подходит к пресинаптической мембране, сливается с ней и нейромедиатор из синаптического пузырька попадает в синаптическую щель и действует на рецептор постсинаптической мембраны, что вызывает её деполяризацию, которая передается по центральному отростку следующего нейрона. В химическом синапсе информация передается только в одном направлении. Синапсы делятся на тормозные, которые содержат тормозные нейромедиаторы (глицин, ГАМК - гамма аминомасляная кислота); и возбуждающие, которые содержат возбуждающие нейромедиаторы (ацетилхолин, адреналин, норадреналин, глютаминовая кислота). Эффекторные синапсы - синапсы, которые заканчиваются на рабочих клетках (напр., нервно-мышечные синапсы, секреторные синапсы). Нервно-мышечные синапсы образуются на скелетном мышечном волокне; содержат пресинаптическую часть, которая образована конечным терминальным отделом аксона двигательного нейрона и внедряется в скелетное мышечное волокно. А прилежащий участок скелетного мышечного волокна образует постсинаптическую часть. В этой части отсутствуют миофибриллы, но в большом количестве располагаются ядра и митохондрии, а сарколемма формирует постсинаптическую мембрану. При поступлении нервного импульса в пресинаптическую часть из синаптического пузырька в синаптическую щель выделяется ацетилхолин, который вызывает формирование нервного импульса в постсинаптической мембране. Далее импульс распространяется по сарколемме мышечного волокна, достигает Т-трубочек канальца саркоплазматической сети и вызывает выброс из них кальция, тем самым, запуская процесс сокращения. Чувствительные нервные окончания более разнообразны. • Свободные нервные окончания встречаются только в эпидермисе. Проходя через базальную мембрану, волокно отбрасывает миелиновую оболочку и свободно, без глии контактирует с эпителиальными клетками. Это температурные и болевые рецепторы. • Несвободные неинкапсулированные - в соединительной ткани. Разветвления осевого цилиндра сопровождается глией. Это рецепторы осязания. • Инкапсулированные - разветвления осевого цилиндра сопровождается внутренней глиальной колбой и наружной соединительно-тканной колбой. Это рецепторы осязания. Регенерация. Нервная клетка сохраняет способность к регенерации при условии сохранения тела нейрона, а отростки и нервные волокна регенерируют примерно со скоростью 1-2 мм в сутки. При полном повреждении нервного волокна в теле нейрона усиливаются обменные процессы, которые приводят к усилению внутриклеточной регенерации. Образованию веществ и росту центрального отростка с образованием на конце отростка колбы роста. Далее в периферическом участке распадается осевой цилиндр, глиальная оболочка, часть клеток которой разрушается, а часть леммоцитов сохраняется и пролиферируют. Выстраиваются цепочкой. Растущий центральный отросток внедряется в глиальный тяж и вокруг него формируется глиальная оболочка. Регенерации препятствуют воспаление, образование соединительнотканного рубца. СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА Включает сердце, кровеносные и лимфатические сосуды. Закладывается на 3 неделе эмбриогенеза. Кровеносные сосуды закладываются из мезенхимы (перикард - из спланхнотомов); делятся на артериальные и венозные. По размеру они делятся на крупные, средние и мелкие. В стенке всех сосудов выделяют внутреннюю, среднюю и наружную оболочки. Артериальные сосуды в зависимости от строения стенки делятся на артерии эластического типа, мышечно-эластического (или смешанного типа) и мышечного типа. К сосудам эластического типа относятся аорта и легочная артерия. Аорта имеет тонкую внутреннюю оболочку, выстланную изнутри эндотелием, который создает условия для тока крови. Затем идет подэндотелиальный слой, образованный рыхлой соединительной тканью. После подэндотелиального слоя идет сплетение тонких эластических волокон. Сосудов внутренняя оболочка не содержит, питается диффузно. Средняя оболочка мощная, широкая, содержит толстые эластические окончатые мембраны, состоящие из переплетенных между собой эластических волокон. В их окнах под углом располагаются отдельные гладкомышечные клетки. Строение стенки сосуда определяется гемодинамическими факторами: скоростью кровотока и уровнем кровяного давления. Стенка аорты обладает выраженными эластическими свойствами, она способна сильно растягиваться и возвращаться в исходное состояние. Наружная оболочка состоит из рыхлой соединительной ткани, внутренний слой ее содержит более плотную соединительную ткань. В наружной и средней оболочках имеются собственные кровеносные сосуды. К сосудам мышечного типа относятся сонная и подключичная артерии. В их внутренней оболочке сплетение эластических волокон замещается внутренней эластической мембраной. Средняя оболочка содержит меньшее количество эластических окончатых мембран и увеличенное до половины объема количество гладкомышечной ткани. Сохраняются эластические свойства стенки и усиливается ее охранительная способность. Сосуды мышечного типа составляют основную массу сосудов мелкого и среднего калибров. Внутренняя оболочка содержит эндотелий, внутренний просвет артерии неровный. Затем идет подэндотелиальный слой и внутренняя эластическая мембрана. Средняя оболочка содержит дугообразные внутренние эластические волокна, при этом их вершина находится в средней части оболочки, а концы этих волокон соединяются с внутренней эластической мембраной или с наружной эластической мембраной, за счет чего образуется эластический каркас стенки артерий. Между петлями этих волокон циркулярно и по спирали идут пучки гладкомышечных клеток. Эта ткань преобладает по объему, поэтому у стенок этих сосудов сильно возрастает сократительная способность. Наружная оболочка содержит наружную эластическую мембрану, которая более тонкая. Кнаружи от нее идет рыхлая соединительная ткань. При сокращении сосуда мышечного типа происходит сужение просвета сосуда, укорочение участка артерии и частичный поворот этого участка. Наиболее мелкие сосуды мышечного типа Называются артериолы. У них сохраняются все 3 оболочки, но они сильно истончаются. Внутренняя оболочка содержит эндотелий, подэндотелиальный слой, внутреннюю эластическую мембрану. В средней оболочке в 1-2 слоя располагаются гладкомышечные клетки. В наружной оболочке исчезает наружная эластическая мембрана, но сохраняется рыхлая соединительная ткань. Артериолы распадаются на кровеносные капилляры. Их плотность наиболее высока в интенсивно функционирующих органах скелетная мышечная ткань, миокард и серое вещество мозга. Они располагаются в виде петель в коже, в виде клубочков - в почке, но чаще всего в виде сетей. Все капилляры различаются по диаметру. Самые мелкие имеют диаметр 4-7 мкм -в органах с большой нагрузкой. От 7 до 11 мкм в слизистых оболочках и в коже. До 20-30 мкм - синусоидные кровеносные капилляры, находятся в кроветворных органах, в печени, в эндокринных органах. Наиболее крупные (50-60 мкм) лакунарные капилляры располагаются в половых органах. Стенка кровеносных капилляров содержит базальную мембрану, которая в некоторых участках расщепляется на 2 листка, между которыми располагаются клетки-перициты с длинными отростками. Эти клетки регулируют просвет кровеносного капилляра. Изнутри капилляры выстланы эндотелием. В нем встречаются поры, каналы, щели, фенестры, которые усиливают проницаемость капилляров. Проницаемость стенки капилляра регулируется базальной мембраной. Вокруг капилляра находится прослойка рыхлой соединительной ткани, а рядом с ним располагаются перициты и тучные клетки. Кровеносные капилляры выполняют транспортную функцию, но основной является обменная (трофическая) функция. Через стенку капилляров легко проникают газы, питательные вещества и продукты обмена. Трофическая функция капилляров обеспечивается за счет того, что давление крови в капиллярах низкое, скорость кровотока маленькая, очень тонкая стенка и присутствует рыхлая соединительная ткань, которая богата межклеточным основным веществом. Гемокапилляры сливаются в венулы. Они имеют такое же строение стенки, как и капилляры. но шире и крупнее капилляров. Артериолы. капилляры и венулы составляют микроциркуляторное русло и располагаются внутри органов. Эти сосуды выполняют трофическую функцию. Венулы сливаются в вены. В стенке выделяют 3 оболочки. По строению все вены делятся на вены безмышечного типа, располагающиеся в селезенке, плаценте, твердой мозговой оболочке, костях. Они имеют только внутреннюю оболочку -эндотелиальную: тонкий подэндотелиальный слой, рыхлую соединительную ткань, которая срастается со стромой органа. Вены мышечного типа содержат гладкомышечные клетки и отличаются содержанием гладкомышечных элементов. Вены со слаборазвитыми мышечными тяжами находятся в области шеи, головы, верхней части туловища. Имеют 3 оболочки. Внутренняя содержит эндотелий и подэндотелиальный слой. Средняя имеет отдельные циркулярные пучки гладкомышечных клеток, разделенные рыхлой соединительной тканью. Наружную оболочку составляет соединительнотканный слой. Вены со среднеразвитыми мышечными тяжами располагаются в средней части туловища, в верхних конечностях. В их внутренних и наружных оболочках имеются продольно идущие гладкомышечные клетки. В средней оболочке большое число циркулярных пучков гладкомышечных клеток. Вены с сильно развитыми мышечными тяжами располагаются в нижней части туловища и нижних конечностях. Их внутренняя оболочка образует клапаны. Во внутренней и наружной оболочках идут продольные пучки гладкомышечных клеток. Средняя оболочка представлена сплошным слоем циркулярных пучков гладкомышечных клеток. Вены мышечного типа, в отличие от артерий, имеют клапаны. В их стенках отсутствует внутренняя и наружная эластические мембраны, средняя оболочка плохо развита и идут только циркулярные гладкомышечные клетки. Регенерация. Очень хорошо регенерируют капилляры, а по мере увеличения диаметра сосудов способность к регенерации падает. Сердце содержит 3 оболочки: внутренняя оболочка -эндокард (развивается из мезенхимы); далее мышечная оболочка - миокард (развивается из мезодермы) и наружная оболочка - эпикард, ее соединительно-тканная основа развивается из мезенхимы, а мезотелий - из мезодермы. Эндокард - тонкая оболочка, изнутри выстлана эндотелием. Подэндотелиальный слой состоит из рыхлой соединительной ткани. Мышечно - эластический слой содержит отдельные гладкомышечные клетки, окутанные тонкими эластическими волокнами. Наружный соединительнотканный слой состоит из рыхлой соединительной ткани. Питается эндокард диффузно, кровеносных сосудов нет. Миокард максимально развит в стенке левого желудочка. Его основу составляет сердечная мышечная ткань, прежде всего сократительные кардиомиоциты - отросчатые клетки. Располагаясь цепочками, они образуют сердечные мышечные волокна, которые за счет отростков-анастомозов связаны с соседними мышечными волокнами. Мышечные волокна формируют пучки, идущие в нескольких направлениях. Вокруг волокон находятся тонкие прослойки рыхлой соединительной ткани, содержащей большое количество кровеносных капилляров. В миокарде на границе с эндокардом располагаются волокна проводящей системы сердца. Они состоят из проводящих кардиомиоцитов. передающих импульсы на сократительные кардиомиоциты. Регенерация миокарда происходит за счет внутриклеточной регенерации, компенсаторной гипертрофии кардиомиоцитов. На месте погибших кардиомиоцитов формируется соединительнотканный рубец. Также возможно деление кардиомиоцитов у детей до 5 лет. Эпикард - тонкая оболочка, ее основу составляет пластинка из рыхлой соединительной ткани. Эта пластинка покрыта мезотелием, увлажняющим ее за счет выработки и выделения слизистого секрета. Лимфатические сосуды Они имеют такое же строение, как и венозные. Однако лимфатические капилляры существенно отличаются от венозных. Они начинаются слепо в рыхлых соединительных тканях, сильно расширены, отсутствует или слабо развита базальная мембрана, имеются очень широкие межэндотелиальные щели. Вокруг располагается рыхлая соединительная ткань и тканевая жидкость, насыщенная токсическими веществами и липидами. Эта жидкость вместе с лейкоцитами (преимущественно лимфоцитами) через щели проникает внутрь лимфатических капилляров и далее в сосуды и вены. Основной функцией является выведение из тканей токсических веществ и их обезвреживание.
Дата добавления: 2015-04-30; Просмотров: 707; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |