КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Магнитоэлектрические приборы
КЛАССИФИКАЦИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ В соответствии с ГОСТ 22261 «Приборы электроизмерительные. Общие технические требования» приборы классифицируют по следующим признакам. 1. По виду измеряемой величины, когда классификацию производят по наименованию единицы измеряемой величины. На шкале прибора пишут полное его наименование или начальную латинскую букву единицы измеряемой величины, например: амперметр — А, вольтметр _ V, ваттметр — W и т. д. Для многофункциональных приборов зти обозначения указывают у переключающих устройств и сочетают с наименованием прибора, например «вольтамперметр», к условной букве наименования прибора может быть добавлено обозначение кратности основной единицы: миллиампер —mА, киловольт — kV, мегаватт — MW и т. д. 2. По физическому принципу действия измерительного механизма прибора. Такая классификация определяется способом преобразования электрической величины в механическое действие подвижной части прибора (табл. 9.1). В ряде приборов используют преобразовательные устройства в комплекте с обычным измерительным механизмом. Например, для измерения переменного тока магнитоэлектрическим прибором используют выпрямитель с полупроводниковым элементом. В конце табл. 9.1 приведены примеры обозначения приборов со встроенными преобразователями. 3. Породу тока. Эта классификация позволяет определить, в цепях какого тока можно применять данный прибор. Это обозначают условными знаками на шкале прибора, приведенными в табл. 9.2. На приборах переменного тока указывают номинальное значение частоты или диапазон частот, при которых их применяют, например, 20-50-120 Гц; 45-550 Гц; при этом подчеркнутое значение является номинальным для данного прибора. Если на приборе не указан диапазон рабочих частот, то он предназначен для измерений в установках с частотой 50 Гц.
Таблица 9.1 Классификация электроизмерительных приборов по физическому принципу действия измерительного механизма
Таблица 9.2 Классификация электроизмерительных приборов по роду тока
4. По классу точности. Класс точности прибора обозначают числом, равным допускаемой приведенной погрешности, выраженной в процентах. Выпускают приборы следующих классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Для счетчиков активной энергии шкала классов точности несколько другая: 0,5; 1,0; 2,0; 2,5. Цифру, обозначающую класс точности, указывают на шкале прибора. Класс точности прибора определяет основную погрешность прибора, которая обусловлена его конструкцией, технологией изготовления и имеет место при нормальных условиях эксплуатации (определенные диапазоны температуры и влажности, отсутствие внешних электрического и магнитного полей и вибрации, правильная установка и т. д.). Если условия эксплуатации отличаются от нормальных, то возникают дополнительные погрешности, которые могут иметь как отрицательное, так и положительное значение и которые влияют на точность измерения. Класс точности прибора является его обобщенной метрологической характеристикой. Но истинная точность измерения определяется не только классом точности, так как, согласно определению класса точности, допускаемая абсолютная погрешность данного прибора одинакова для всех точек шкалы (где — максимальная приведенная погрешность, — нормирующее значение). Следовательно, допускаемая относительная погрешность меньше в точках шкалы, ближайших к нормирующему значению. Поэтому при использовании многодиапазонных приборов нормирующее значение надо выбирать так, чтобы прибор давал наибольшие показания. 5. По типу устройства отсчета. Устройство отсчета прибора состоит из шкалы и указателя. Шкалы могут быть или проградуированные в единицах намеряемой величины (их применяют в приборах с одним диапазоном), или же условные, которые имеют 75, 100 или 150 делений (их применяют в приборах с несколькими диапазонами измерений). В качестве указателя применяют стрелки (копьевидные, ножевидные, нитевидные) или световое пятно с чертой. Во избежание параллакса, вызываемого неправильным положением глаза наблюдателя относительно шкалы и стрелки, шкалу дополняют зеркалом. При измерении необходимо добиться такого положения глаза, чтобы стрелка совпала со своим отражением в зеркале. Такую шкалу применяют в переносных приборах с классом точности не ниже 1,0. 6. По исполнению в зависимости от условий эксплуатации. Класс прибора определяется пятью группами по диапазону рабочих температур и относительной влажности. Предельные значения определяют условия при хранении и перевозке. Группу прибора указывают на шкале соответствующей буквой. Группа А знака на шкале не имеет. В пределах диапазона рабочих температур дополнительная погрешность лежит в пределах класса точности приборов. 7. По устойчивости к механическим воздействиям приборы подразделяют на группы в зависимости от значения максимального ускорения при тряске или вибрации (м/с2): обыкновенные с повышенной прочностью (ОП), нечувствительные к вибрации (ВН), вибропрочные (ВП), нечувствительные к тряске (ТН), тряскопрочные (ТП) и ударопрочные (У). Обыкновенные с повышенной механической прочностью приборы для всех классов точности от 0,5 до 4,0 выдерживают ускорение до 15 м/с2 (самопишущие приборы — до 10 м/с2) и выпускаются для одного заданного ускорения. Переносные приборы выпускаются по трем группам: обыкновенные с повышенной прочностью, вибропрочные и тряскопрочные. 8. По степени защиты от внешних магнитных и электрических полей приборы делят на категории I и II. От воздействия внешних полей приборы защищают экранированием измерительного механизма.
Момент вращения в магнитоэлектрических приборах создается в результате воздействия магнитного поля постоянного магнита на проводники с током. Подвижная часть может выполняться или в виде рамки с обмоткой, или в виде постоянного магнита, закрепленного на оси. Более распространена конструкция с подвижной рамкой. Приборы с подвижным магнитом имеют более низкие классы точности и изготовляют как указательные (класс 4,0 и ниже) для транспортных средств (автомобили, тракторы и т. д.). На рис. 9.3 приведена принципиальная схема прибора с подвижной рамкой. Рамка 1 с обмоткой помещается в зазоре 3 между магнитом 4, расположенным внутри рамки, и магнитным ярмом 5. Так как воздушный зазор вдоль окружности магнита постоянен, то магнитная индукция В в зазоре также постоянна. Если в обмотке с числом витков существует ток /, то создается вращающий момент Мвр = В ISp = ФI, (9,1) где Sp — площадь рамки в плоскости радиуса вращения; Ф = BSp — магнитный поток. Под действием вращающего момента рамка поворачивается на угол α и закручивает пружину 2. Противодействующий момент, создаваемый пружиной, Мпр = тα, (9.2) где т — удельный противодействующий момент.
Рис. 9.3 Принципиальная схема магнитоэлектрического прибора с магнитом, расположенным внутри рамки
При некотором значении тока I в обмотке рамки, учитывая, что Ф = const и = const, вращающий момент Мвр = const. Следовательно, при некотором угле поворота рамки противодействующий момент пружины будет равен вращающему моменту: Мпр = Мвр, или та = ФI= k I, где Ф= k = const. Тогда = , где с = k/m = const. Угол поворота стрелки прибора — это угол поворота рамки, поэтому из выражения (9.3) видно, что шкала такого прибора равномерная. Величина с = /I получила название чувствительности прибора. Повышение чувствительности может быть получено за счет увеличения магнитной индукции В и произведения Spw и уменьшения т. Уменьшить удельный момент можно, переходя к использованию светового указателя и растяжек. Магнитоэлектрические приборы пригодны только для измерения в цепях постоянного тока. При включении их в цепь переменного тока применяют преобразовательные устройства (выпрямители, термоэлектрические преобразователи и т. д.). Широкое распространение получили узкопрофильные магнитоэлектрические приборы со световым указателем для установки их на щитах и пультах.Они занимают в 5...10 раз меньшую площадь и имеют дополнительные информационные возможности за счет изменения при выходе измеряемой величины за устанавливаемые пределы цвета указателей или за счет появления сигнала от фотоконтактного устройства. Обмотку рамки измерительного механизма рассчитывают на токи до 100 мА, если прибор используют как амперметр, и до 10 мА, если как вольтметр. Большие токи вызвали бы увеличение сечения проводов обмотки рамки (обычно диаметр проводов не превышает 0,2 мм), а следовательно, массы и момента инерции подвижной части прибора. Пределы измерения по току в магнитоэлектрических приборах расширяют с помощью шунтов, а по напряжению — с помощью добавочных резисторов.
Дата добавления: 2015-05-06; Просмотров: 1409; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |