КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
IGBT (БТИЗ) транзисторы
Это полностью управляемый п/п прибор, в основу которого положена трехслойная структура. Включение и выключение осуществляется подачей и снятием положительного напряжения между затвором и истоком (UGE), соединенным с эмиттером. Для БТИЗ с номинальным напряжением 600 – 1200 В и более прямое падение напряжения в полностью включенном состоянии также, как и для БПТ, находятся в диапазоне 1, 5 ÷ 3,5 В = UКЭнасыщ. Это значительно меньше, чем Uси min у полевых транзисторов на этих же напряжениях. С другой стороны КМОП (MOSFET) с номинальными напряжениями 200 В и менее, имеют более низкое падение напряжения во включенном состоянии, чем БТИЗ, и остаются непревзойденными в области низких напряжений. По быстродействию БТИЗ уступают КМОП, но значительно превосходят БПТ. Время фронта и среза 0,2 ÷ 1,5 vrc/ Область безопасной работы (ОБР) гораздо шире, чем у БПТ по схеме Дарлингтона. Разработаны на 4500 В модули и 1800 А. Интеллектуальные модули включают в себя схему управления.
Основные параметры и характеристики электронных усилителей. Общие сведения. Основные свойства, классификация и структура усилителя. Амплитудно-частотная, амплитудная и фазовая характеристики. Их основные параметры. Шумы усилителя (тепловой, дробовой, фликкер-шум). Шумы тока и напряжения. Критерии применения ПТ и БПТ исходя из требований минимизации шумов при различных сопротивлениях источника сигнала. Синфазные и противофазные помехи. Способы их уменьшения и экранирования.
Усилители - устройства, предназначенные для увеличения параметров электрического сигнала (напряжения, тока, мощности). Усилитель имеет входную цепь, к которой подводится усиливаемый сигнал, и выходную цепь, с которой выходной сигнал снимается и подается в нагрузку.
УПТ – усилитель постоянного тока УЗЧ – усилитель звуковых частот УНЧ – усилитель низких частот УВЧ – усилитель высоких частот ШПУ – широкополосные усилители УПУ - узкополосные усилители Δf = fв-fн - полоса пропускания или полоса усиливаемых частот.
Основные параметры:
Амплитудно-частотная характеристика отражает зависимость модуля коэффициента усиления
Каскады рассчитываются последовательно от оконечного к первому. Оконечный каскад обеспечивает получение требуемой мощности сигнала на нагрузке Поэтому второй характеристикой усилителей является фазо-частотная характеристика (ФЧХ), определяющая зависимость угла фазового сдвига от частоты.
Усилительный каскад задерживает сигнал на какое-то время. Каждые гармонические составляющие задерживаются на разное время. Амплитудная характеристика усилителя (реальная):
1. Коэффициент усиления по току 2. Коэффициент усиления по напряжению
3. Коэффициент усиления по мощности 4. Чувствительность усилителя — минимальное значение входного сигнала, при котором полезный сигнал на выходе уже различим на уровне помех (при отношении сигнал - шум) 5. Динамический диапазон - отношение амплитуды максимально допустимого выходного напряжения к минимально допустимому, при которых не возникает искажение 1) Тепловой шум (Джонсона). Любой резистор генерирует на своих концах шум напряжений. У него горизонтальный частотный спектр (одинаковая мощность шума на всех частотах). Шум с горизонтальным спектром называется «белым шумом».
Например, резистор с R=10 кОм, при комнатной температуре в полосе пропускания В=10 кГц имеет среднеквадратичное напряжение шума в разомкнутой цепи порядк Uш = 1,3 мкВ. Для уменьшения теплового шума можно уменьшить температуру резистора. 2) Дробовой шум. Электрический ток представляет собой движение дискретных зарядов, а не плавное непрерывное течение. Конечность заряда приводит к статистическим флуктуациям тока, определяемым по формуле:
q - заряд электрона, I n.т – постоянный ток, проходящий через резистор; B – ширина полосы частот измерения. Значение этого шума (в % - м отношении) тем меньше, чем выше ток.
3) Шум 1/f (фликкер - шум). Дробовой и тепловой шумы – это неуменьшаемые в данных условиях виды шума, происходящие вследствие действия физических законов. Самый дорогой резистор имеет тот же тепловой шум, что и дешевый углеродный резистор с таким же сопротивлением.
4) Шум тока базы транзистора и шум катодного тока в электронных лампах. Биполярные транзисторные усилители могут обеспечить очень хорошие шумовые параметры в диапазоне от 200 Ом до 1 МОм, при токе коллектора менее 1 мкА. При больших сопротивлениях источника >100 кОм преобладает шум тока транзистора, поэтому лучшим устройством для усиления сигнала с шумом будет ПТ, хотя у него шум напряжения больше чем у БПТ, но ток затвора и его шум исчезающе малы. При очень малых сопротивлениях < 50 Ом всегда будет преобладать шум напряжения транзистора и коэффициент шума будет неудовлетворительным. Лучше использовать трансформатор для увеличения уровня и сопротивления источника сигнала. Для БПТ основное значение имеет шум тока входного, для ПТ – шум напряжения (у них нет входного тока), т.е. при С целью уменьшения шумов используется параллельное соединение БПТ. Шумы при этом уменьшаются в С целью устранения помех по цепям питания используются помехоподавляющие фильтры, проникающих из атмосферы – различные виды экранирования. С помощью замкнутых объемов со стенками из материала с высокой проводимостью, мы можем практически полностью экранировать приемник от электростатических помех. Магнитную составляющую помехи исключить невозможно. Ее можно только уменьшить путем экранирования с использованием материала с высокой магнитной проводимостью (например, пермаллой). Очень важную роль играет заземление. Помехи бывают продольные и поперечные. Подавление продольных помех очень эффективно осуществляется продольным трансформатором – режекторным дросселем.
Здесь по отношению к полезному дифференциальному сигналу трансформатор не является индуктивным сопротивлением благодаря встречному включению обмоток, а продольным синфазным помехам он оказывает индуктивное сопротивление.
Схема полезна для подавления ВЧ помех, когда в качестве сердечника используется небольшое ферритное кольцо, в которое один или несколько раз продевается витая пара сигнальных проводов. Помехи, порождаемые магнитными полями, пропорциональны площади пересекаемого переменным магнитным потоком контура и зависит от ориентации этого контура по отношению к источнику наводки. ЭДС, наводимая полем будет создавать поперечную наводку, поэтому дифференциальный вход не помогает. В схемах 1 – 6 цепи заземлены с двух сторон, возвратные токи источника сигнала проходят через шину земли полностью или частично, поэтому площадь контура велика. В схемах 7 – 11 проводник возвратного тока расположен близко к сигнальному, поэтому подавление выше. В схемах 1 – 2 магнитного экранирования нет, т.к. контур не изменился по сравнению с простым проводником. Такое заземление обеспечивает экранирование от электрического поля. Заземление обоих концов дает малый эффект.
Усилительные каскады на ПТ и БПТ. Статистический режим работы усилительного каскада, выбор рабочей точки, схемы задания напряжения смещения БПТ. Расчет по постоянному и переменному току каскадов с ОЭ и ОК. Сравнительный анализ каскадов ОЭ, ОК, ОБ. Каскад с ОЭ как преобразователь напряжение-ток, фазоинверсный каскад. Усилительные каскады на ПТ, схемы задания напряжения смещения, особенности их работы и включения. Динамическая нагрузка, источник тока, токовые зеркала и отражатели тока на ПТ и БПТ. Ослабление влияния температуры и эффекта Эрли. Токовое зеркало Уилсона, выходное сопротивление источника тока. Области применения
Каскад усиления переменного тока по схеме ОЭ построен на биполярном транзисторе n-p-n. Расчет каскада сводится к выбору точки покоя на статической линии нагрузки, определению величин Rк и RБ по заданным параметрам нагрузки, например, Um вых и Rн, и напряжению источника питания Eк. Выбранная точка покоя должна обеспечить требуемую величину тока в нагрузке, напряжения на нагрузке без нелинейных искажений и удовлетворять предельным параметрам транзистора. Поэтому ток покоя:
Напряжение покоя обычно выбирается Uкэп=Eк/2, чтобы обеспечить максимальное выходное напряжение без искажений. Уравнение статической линии нагрузки I к=
Чтобы обеспечить заданный режим покоя, надо рассчитать величины Rк и RБ:
При работе каскада в режиме холостого хода и При работе каскада на нагрузку в коллекторную цепь параллельно Rк включается Rн. Поэтому режим работы каскада меняется. Рабочая точка перемещается по динамической линии нагрузки, уравнение которой
Динамическая линия нагрузки должна проходить через точку покоя П (частный случай - Diкэ=0). Вторую точку можно получить, задавшись приращением Diк и подсчитав изменение напряжения DUкэ относительно координат точки покоя. Динамическая линия нагрузки показана на рисунке (c-d). Очевидно, что угол между осью Uкэ и динамической линией нагрузки тем больше, чем меньше R н (при Rн=0 он составит 90°). В связи с этим предельная амплитуда выходного напряжения U вых пр с уменьшением Rн становится меньше Eк/2. Это может вызвать появление нелинейных искажений. Если заданное значение Um вых, больше, чем Uвых пр, чтобы избежать нелинейных искажений, надо сместить точку покоя. Увеличивают Iкп и анализ повторяют. Динамические параметры каскада:
Расчёт каскада с общим эмиттером по постоянному и переменному току.
Расчёт может осуществляться либо слева направо, либо справа налево. Слева направо. Дано: Rg = 1кОм U = 20В h21 = 100 kU = 20 fн = 200 δн = 6дБ Найти: R1, R2, Rк, Rэ1, Rэ2, Rн,C1,2, C3. По постоянному току: 1. Шина питания по постоянному току эквипотенциальна земле (через Сф) 2. Rвх = Rэ1h21 = 10Rд = 100k => Rэ1 = 1кОм 3. Rэ/Rк = 0,1 – 0,3 => Rк = 5.1кОм 4. RH=l0Rвых = 51кОм (Rвых = Rкб||Rк) 5. Uк = Uп/2=>Iк = Uп/2·1/Rк = 2мА 6. Uэ = IэRэ1 = 2В 7. Uб =Uэ+ 0,6 = 2,6В 8. R1/R2 = 17,4/2,6 = 6,7 9. R1 = 75кОм = 82кОм
По переменному току: 11. kU = Rк/(Rэ+rэ0) => Rэ+rэ0 = 255Ом => Rэ = 242,5Ом Rэ1·Rэ2/(Rэ1+ Rэ2) = 242,5Ом Rэ1 = 1кОм => Rэ2 = 330Ом 12. δэ = 0,5 δ = 3дБ При понижении частоты, ёмкостное сопротивление Сэ возрастает, увеличивается эквивалентное сопротивление в эмиттерной цепи и уменьшается коэффициент усиления. Z/R = √2 => R = Xc = Rэ2+rэ0 = 342,5Ом
13.δ1 = δ2 = 1,5дБ 14.
C1 = 120нФ 15. δ1 = δ2 = 1,5дБ Rн/Rд = 5 => XC2/XC1 = 5 => C1/C2 = 5 =>C2 =33нФ
Дата добавления: 2015-05-06; Просмотров: 707; Нарушение авторских прав?; Мы поможем в написании вашей работы! |