![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Полупроводниковые конденсаторы
Ионно-легированные резисторы.
За последнее время все большее распространение получают ионно-легированные резисторы,которые в отличие от диффузионных резисторов получаются не диффузией, а локальной ионной имплантацией примеси. Структура ионно-легированного резистора такая же, как у диффузионного (рисунок 4.17д), но глубина имплантированного р-слоя значительно меньше глубины базового слоя и составляет всего 0,2-0,3 мкм. Кроме того, ионная имплантация позволяет обеспечить сколь-угодно малую концентрацию примеси в слое. Оба фактора способствуют получению весьма высоких удельных сопротивлений слоя - до 10-20кОм/. При этом номиналы сопротивлении могут составлять сотни килоом, ТКС меньше, чем у диффузионных резисторов, и лежит в пределах 3-5%/0С, а разброс сопротивлений не превышает ± (5-10)%. Поскольку толщина имплантированного слоя мала, к нему трудно осуществить омические контакты. Поэтому по краям резистивного слоя на этапе базовой диффузии формируют узкие диффузионные р-слои, с которыми осуществляется омический контакт обычным способом.
4.7.3 Эквивалентная схема.
Характерной особенностью любого интегрального резистора является наличие у него паразитной емкостиотносительно подложки или изолирующего кармана. В простейшем диффузионном резисторе такой паразитной емкостью является барьерная емкость перехода между рабочим р-слоем и эпитаксиальным n-слоем кармана. Строго говоря, совокупность резистора и паразитной емкости представляет собой распределенную RС-линию. Однако для приближенных расчетов удобнее пользоваться эквивалентными схемами с сосредоточенными постоянными: П-образной или Т-образной (рисунок 4.17е). На этой схеме R - сопротивление резистора, СП - усредненная емкость перехода. RC- цепочка снижает частотные свойства и увеличивает переходные процессы в схеме. Рассмотренные эквивалентные схемы действительны и для других вариантов резисторов: когда рабочими являются змиттерный или коллекторный слой, а также при диэлектрической изоляции элементов. Однако количественные результаты оказываются разными. Например, при использовании диэлектрической изоляции постоянная времени может быть в несколько раз меньше.
В биполярных полупроводниковых ИМС роль конденсаторов играют обратно смещенные р-n переходы. У таких конденсаторов хотя бы один из слоев является диффузионным, поэтому их называют диффузионными конденсаторами.
4.8.1 Диффузионный конденсатор.
Типичная структура диффузионного конденсатора, в котором используется переход коллектор - база, показана на рисунке 4.18а. Емкость такого конденсатора в общем случае имеет вид: С = C0×S, (4.3)
где С0- удельная емкость р-n перехода, S-площадь конденсатора. Оптимальной, конфигурацией является форма близкая к квадрату. Например, если C0 = 150 пФ/мм2 и С =100 пФ, то S»0,8 мм. Как видим, размеры конденсатора получились сравнимыми с размерами кристалла. Используя не коллекторный, а эмиттерный р-n переход, можно обеспечить в 5-7 раз большие значения максимальной емкости. Это объясняется большей удельной емкостью эмиттерного перехода, поскольку он образован слоями с более высокой концентрацией, а, следовательно, меньшей толщиной р-n перехода. Возможно совместное использование эмиттерного и коллекторного переходов.
Рисунок 4.18
Основные параметры диффузионного конденсатораприведены в таблице 4.2 для обоих вариантов конденсаторов - с использованием коллекторного и эмиттерного переходов. Как видим, основное преимущество при использовании эмиттерного перехода - большие значения максимальной емкости. По пробивному напряжению этот вариант уступает варианту с использованием коллекторного перехода. Эквивалентная схема конденсатора приведена на рисунке 4.18б.
Таблица 4.2
Необходимым условием для нормальной работы конденсатора является обратное смещение р-n перехода. Следовательно, напряжение на конденсаторе должноиметь строго определенную полярность. Кроме того, емкость зависит от напряжения. Это значит, что конденсатор является нелинейным свольт-фарадной характеристикой, как у варикапа. Однако чаще требуются линейные конденсаторы с постоянной емкостью, которые способны пропускать без искажения переменные сигналы и «блокировать» (т. е. не пропускать) постоянные составляющие сигналов, они успешно выполняет такую функцию при наличии постоянного смещения Е, превышающего амплитуду переменного сигнала. С другой стороны, является возможность менять значение емкости, меняя смещение Е. Следовательно, конденсатор можно использовать не только в качестве «обычного» конденсатора с постоянной емкостью, но и в качестве конденсатора с электрически управляемой емкостьюили, как говорят, конденсатора переменнойемкости. Однако диапазон электрической регулировки ограничен: меняя смещение Еот 1 до 10 В можно изменить емкость конденсатора всего в 2-2,5 раза. Из-за высокого сопротивления коллекторного n-слоя добротность таких конденсаторов низкая.
4.8.2 МОП-конденсатор.
Интегральным конденсатором, принципиально отличным от диффузионного, является МОП-конденсатор. Его типичная структура показана на рисунке 4.18в. Здесь над эмиттерным n + - слоем с помощью дополнительных технологических процессов выращен слой тонкого (0,08-0,12 мкм) окисла. В дальнейшем, при осуществлении металлической разводки, на этот слой напыляется алюминиевая верхняя обкладка конденсатора. Нижней обкладкой служит эмиттерный n + - слой. Основные параметры МОП-конденсаторов приведены в таблице 4.2. Добротность выше, так как сопротивление r значительно ниже из-за n+-слоя. Важным преимуществом МОП-конденсаторов по сравнению с диффузионным является то, что они работают при любой полярности напряжения, т. е. аналогичны «обычному» конденсатору. Однако МОП-конденсатор, как и диффузионный, тоже нелинейный. Паразитная емкость МОП-конденсаторов учитывается с помощью ужеизвестной эквивалентной схемы (рисунок 4.18г), где под емкостью СП следует понимать емкость между n-карманом и р-подложкой. В заключение заметим, что в МОП-транзисторных ИМС, в отличие от биполярных, изготовление МОП-конденсаторов не связано с дополнительными технологическими процессами: тонкий окисел для конденсаторов получается на том же этапе, что и тонкий окисел под затвором, а низкоомный полупроводниковый слой - на этапе легирования истока и стока. Изолирующие карманы в МОП-технологии, как известно, отсутствуют.
Дата добавления: 2015-05-06; Просмотров: 1286; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |