Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Назначение элементов и принцип работы усилительного каскада по схеме с ОЭ




Существует множество вариантов выполнения схемы усилительного каскада на транзисторе ОЭ. Это обусловлено главным образом особенностями задания режима покоя каскада. Особенности усилительных каскадов и рассмотрим на примере схемы рис. 2, получившей наибольшее применение при реализации каскада на дискретных компонентах.

Основными элементами схемы являются источник питания , управляемый элемент - транзистор и резистор . Эти элементы образуют главную цепь усилительного каскада, в которой за счет протекания управляемого по цепи базы коллекторного тока создается усиленное переменное напряжение на выходе схемы. Остальные элементы каскада выполняют вспомогательную роль. Конденсаторы , являются разделительными. Конденсатор исключает протекание по входной цепи каскада от цепи источника входного сигнала постоянной составляющей тока, что позволяет, во-первых, исключить протекание постоянного тока через источник входного сигнала по цепи и, во-вторых, обеспечить независимость от внутреннего сопротивления этого источника напряжения на базе в режиме покоя. Функция конденсатора сводится к пропусканию в цепь нагрузки переменной составляющей напряжения и задержанию постоянной составляющей.

Рис.2

Резисторы и используются для задания режима покоя каскада. Поскольку биполярный транзистор управляется током, ток покоя управляемого элемента создается заданием соответствующей величины тока базы покоя . Резистор предназначен для создания цепи протекания тока . Совместно с резистор обеспечивает исходное напряжение на базе относительно зажима ”+” источника питания.

Резистор является элементом отрицательной обратной связи, предназначенным для стабилизации режима покоя каскада при изменении температуры. Температурная зависимость параметров режима покоя обусловливается зависимостью коллекторного тока покоя от температуры. Основными причинами такой зависимости являются изменения от температуры начального тока коллектора , напряжения и коэффициента усиления по току транзистора . Температурная нестабильность указанных параметров приводит к прямой зависимости тока от температуры. При отсутствии мер по стабилизации тока , его температурные изменения вызывают изменение режима покоя каскада, что может привести, как будет показано далее, к режиму работы каскада в нелинейной области характеристик транзистора и искажению формы кривой выходного сигнала. Вероятность появления искажений повышается с увеличением амплитуды выходного сигнала.

Проявление отрицательной обратной связи и ее стабилизирующего действия на ток нетрудно показать непосредственно на схеме рис. 2. Предположим, что под влиянием температуры ток увеличился. Это отражается на увеличении тока , повышении напряжения и соответственно снижении напряжения . Ток базы уменьшается, вызывая уменьшение тока , чем создается препятствие наметившемуся увеличению тока . Иными словами, стабилизирующее действие отрицательной обратной связи, создаваемой резистором , проявляется в том, что температурные изменения параметров режима покоя передаются цепью обратной связи в противофазе на вход каскада, препятствуя тем самым изменению тока , а, следовательно, и напряжения .

Конденсатор шунтирует резистор по переменному току, исключая тем самым проявление отрицательной обратной связи в каскаде по переменным составляющим. Отсутствие конденсатора привело бы к уменьшению коэффициентов усиления схемы.

Название схемы «с общим эмиттером» означает, что вывод эмиттера транзистора по переменному току является общим для входной и выходной цепи каскада.

Принцип действия каскада ОЭ заключается в следующем. При наличии постоянных составляющих токов и напряжений в схеме подача на вход каскада переменного напряжения приводит к появлению переменной составляющей тока базы транзистора, а, следовательно, переменной составляющей тока в выходной цепи каскада (в коллекторном токе транзистора). За счет падения напряжения на резисторе создается переменная составляющая напряжения на коллекторе, которая через конденсатор передается на выход каскада - в цепь нагрузки.

Рис.3

Рассмотрим основные положения, на которых базируется расчет элементов схемы каскада, предназначенных для обеспечения требуемых параметров режима покоя (расчет по постоянному току).

Анализ каскада по постоянному току проводят графоаналитическим методом, основанным на использовании графических построений и расчетных соотношений. Графические построения проводятся с помощью выходных (коллекторных) характеристик транзистора (рис. 3, а). Удобство метода заключается в наглядности нахождения связи параметров режима покоя каскада и амплитудными значениями его переменных составляющих (выходного напряжения и тока ), являющимися исходными при расчете каскада.

На выходных характеристиках рис. 3, а проводят так называемую линию нагрузки каскада по постоянному току , представляющую собой геометрические места точек, координаты и которых соответствуют возможным значениям точки (режима) покоя каскада.

В связи с этим построение линии нагрузки каскада по постоянному току удобно провести по двум точкам, характеризующим режим холостого хода (точка ) и режим покоя (точка ) выходной цепи каскада (рис. 3, а). Для точки ” а, и для точки ” , , где выбирают из условия работы транзистора в режиме отсечки напряжение на коллекторе, соответствующее области нелинейных начальных участков выходных характеристик транзистора. Определив координаты точки находим значение тока базы , соответствующего режиму покоя, и определяем координаты точки на входной характеристике (рис. 3, б).

При определении переменных составляющих выходного напряжения каскада и коллекторного тока транзистора используют линию нагрузки каскада по переменному току. При этом необходимо учесть, что по переменному току сопротивление в цепи эмиттера транзистора равно нулю, так как резистор шунтируется конденсатором , а к коллекторной цепи подключается нагрузка, поскольку сопротивление конденсатора по переменному току мало. Если к тому же учесть, что сопротивление источника питания по переменному току также близко к нулю, то окажется, что задача определения этих показателей решается при расчете усилительного каскада по переменному току. Метод расчета основан на замене транзистора и всего каскада его схемой замещения по переменному току. Схема замещения каскада ОЭ приведена на рис. 4, где транзистор представлен его схемой замещения в физических параметрах. Сопротивление каскада по переменному току определяется сопротивлениями резисторов и , включенных параллельно, т. е. . Сопротивление нагрузки каскада по постоянному току больше, чем по переменному току .

Рис.4

Поскольку при наличии входного сигнала напряжение и ток транзистора представляют собой суммы постоянных и переменных составляющих, линия нагрузки по переменному току проходит через точку покоя (рис. 3, а). Наклон линии нагрузки по переменному току будет больше, чем по постоянному току. Линию нагрузки по переменному току строят по отношению приращений напряжения к току: .




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 1331; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.