КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Электропроводность полупроводников. Полупроводниками называют твердые вещества с электропроводностью, создаваемой перемещением электронов
Полупроводниками называют твердые вещества с электропроводностью, создаваемой перемещением электронов, имеющие особые электрические свойства и занимающие по своей удельной электропроводности γ промежуточную область между проводниками. Рис. 74. Энергетические спектры электронов свободного атома К числу электрических свойств полупроводников относится сильное изменение удельной электропроводности под влиянием внешнего электрического поля, нагрева, облучения видимым светом и других факторов. Благодаря этому свойству полупроводники широко используются для создания таких приборов, как вентили, усилители и др. Полупроводниковые кристаллические приборы, выполняющие функции двухх и трехэлектродных ламп, обладают большими преимуществами перед электронными лампами: они имеют в несколько раз меньшие габариты и меньшие объем и вес; в них отсутствует накаливаемый катод, т. е. не расходуется мощность на накал, а рабочий режим устанавливается мгновенно; они позволяют получить больший КПД; они имеют большую механическую прочность и в 10–50 раз больший срок службы. К полупроводникам относятся селен, германий, кремний, теллур, а также ряд окислов, сульфидов и карбидов. Электроны свободного атома, находящегося в нормальном состоянии, имеют определенные уровни энергии 1 (рис. 74). Чем больше удалена от ядра оболочка, в которой находится движущийся вокруг ядра электрон, тем выше уровень энергии последнего. В рассматриваемом изолированном атоме одинаковые уровни энергии могут иметь только два электрона или на каждом из энергетических уровней может находиться не более двух электронов. Электрон переходит с одного энергетического уровня на другой, если сообщить ему дополнительную энергию, равную некоторому целому числу квантов. Уровни энергии электронов возбужденного атома занимают верхнюю часть спектра 2. Для твердого тела различают заполненную зону и зону уровней возбуждения, или свободную зону, разделенные энергетическим барьером. В пределах этого барьера находятся уровни энергии, на которых не могут находиться электроны. Заполненная зона характеризуется тем, что все уровни ее заполнены электронами при температуре 0°К. Зона уровней возбуждения содержит уровни со значительно более высокими энергиями. Электроны, обладающие такими энергиями, могут передвигаться от одного атома кристалла к другому и тем самым обеспечивают прохождение тока проводимости. У металлов заполненная и свободная зоны непосредственно примыкают друг к другу, а в некоторых случаях эти зоны взаимно перекрываются. Поэтому электрон может перейти из первой зоны во вторую, получив извне очень небольшую добавочную энергию. В идеальном полупроводнике без примесей при вырывании электронов из межатомных связей под действием подведенной извне энергии образуется столько же дырок, сколько свободных электронов. При отсутствии электрического поля, созданного внешнии ми источниками электрической энергии, освободившиеся электроны движутся беспорядочно, пока не произойдет рекомбинация, т. е. заполнение электроном дырки. При наличии в полупроводнике примесей в нем преобладают дырки (при акцепторных примесях) или свободные электроны (при донорных примесях). Наличие беспорядочного теплового движения электронов и дырок определяет возможность их диффузии из мест с большей концентрацией зарядов в места с меньшей концентрацией.
74. СВОЙСТВА P‑N– ПЕРЕХОДА
В полупроводниковых приборах применяются два вида контактных соединений: между полупроводниками, имеющими различные типы проводимости, и между полупроводником и металлом. В первом случае создается контакт на границе между областями с проводимостью типа n и проводимостью типа р, называемой р‑n‑переходом. Контактные соединения полупроводника с металлом осуществляются либо в виде точечного контакта между кристаллом и острием металлической проволочки, либо в виде плоскостного контакта, в котором полупроводник и металл соприкасаются по большой поверхности. В приборах с точечным контактом используются свойства ррnnперехода. Основная масса кристалла, применяемого в этих приборах, обладает проводимостью одного типа, а небольшие участки на поверхности кристалла – проводимостью другого типа. Последняя создается благодаря наличию примесей в кристалле полупроводника. Такие участки имеют диаметр порядка десятков микронов. Размеры острия контактной проволочки, находящейся на участке, должны быть меньше размеров самого участка, и поэтому электрическая цепь в приборе замыкается только через р‑n‑переход. Образование р⒫n㞻перехода у плоскостных контактов между полупроводником и металлом объясняется на основе предположения о наличии большого количества игольчатых переходов между плоскостями полупроводника и металла, каждый из которых действует аналогично рассмотренным выше точечным контактам. Пограничные области полупроводников типов р и n, находящиеся в пределах двойного электрического слоя, лишаются части своих основных носителей зарядов и имеют высокое электрическое сопротивление. Они называются запирающим слоем. Если р‑n‑переход включить в цепь источника электрической энергии так, что к области с проводимостью типа р будет приложен положительный потенциал относительно n‑области (рис. 75), то в обеих областях основные носители заряда под действием внешнего поля начнут перемещаться к ррnnпереходу, т. е. навстречу друг другу. При этом слои, близкие к р‑n‑переходу, пополняются основными носителями заряда. Сопротивление ррnnперехода снижается, и уменьшается потенциальный барьер. Например, в р‑области больше основных носителей заряда, чем в n⚓области, протекание через переход основной части тока будет определяться перемещением дырок. В противном случае протекание основной части тока определяется перемещением свободных электронов. В обоих случаях через переход может проходить большой (прямой) ток. Таким образом, р‑n‑переход, пропуская большой ток в прямом направлении и очень малый ток в обратном направлении, обладает вентильными свойствами. Рис. 75. Явления в р‑n‑переходе: а) без воздействия внешнего электрического поля; б) при воздействии внешнего поля в направлении прямой проводимости; в) при воздействии внешнего поля в направлении обратной проводимости
Дата добавления: 2015-05-06; Просмотров: 531; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |