КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общая характеристика переходных процессов
Мощность в трехфазных цепях Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками. (7.5) Формула (7.5) используется для расчета активной мощности в трехфазной цепи при несимметричной нагрузке. При соединении в треугольник симметричной нагрузки При соединении в звезду . В обоих случаях .
8. Переходные процессы в линейных В электрических цепях возможны включения и отключения отдельных ветвей, короткие замыкания участков цепи, различного рода переключения. Любые изменения в электрических цепях можно представить в виде переключений или коммутаций. Характер коммутации указывается в схеме с помощью рубильника со стрелкой. По направлению стрелки можно судить, замыкается или размыкается рубильник. Первый закон. В любой ветви с индуктивностью ток не может изменяться скачком и в момент коммутации сохраняет то значение, которое он имел непосредственно перед моментом коммутации iL (0+) = iL (0-), где iL (0+) - ток в ветви с индуктивностью в момент коммутации, сразу после коммутации. Знак "+" в формуле обычно не записывается. Время переходного процесса отсчитывается от момента коммутации; Второй закон. Напряжение на емкости сразу после коммутации сохраняет то значение, которое оно имело непосредственно перед моментом коммутации. uC (0+) = uC (0-), где uC (0+) - напряжение на емкости в момент коммутации; Допущения, применяемые при анализе переходных процессов. 1. Полагают, что переходный процесс длится бесконечно большое время. 2. Считают, что замыкание и размыкание рубильника происходит мгновенно, без образования электрической дуги. 3. Принимают, что к моменту коммутации предыдущие переходные процессы в цепи закончились. В соответствии с классическим методом расчета, переходный ток в ветви схемы представляют в виде суммы принужденного и свободного токов. . где iпр(t) - принужденный ток, определяется в установившемся режиме после коммутации. Этот ток создается внешним источником питания. Если в цепь включен источник постоянной ЭДС, принужденный ток будет постоянным, если в цепи действует источник синусоидальной ЭДС, принужденный ток изменяется по периодическому, синусоидальному закону; Свободный ток определяют по формуле: . Количество слагаемых в формуле равно числу реактивных элементов (индуктивностей и емкостей) в схеме. 8.2. Переходные процессы в цепях
Короткое замыкание в R-L цепи
На рис. 8.1 изображена электрическая цепь, в которой включен источник постоянной ЭДС. В результате коммутации рубильник замыкается и образуется замкнутый на себя R-L контур. До коммутации по индуктивности протекал ток Определим закон изменения тока в индуктивности после коммутации. Принужденный ток после коммутации замыкается через рубильник, имеющий нулевое сопротивление, и через индуктивность не протекает. Индуктивный ток имеет только свободную составляющую Магнитное поле, исчезая, индуктирует в индуктивной катушке ЭДС самоиндукции. Свободный ток в R-C контуре существует за счет этой электродвижущей силы. (8.1) Ищем решение этого уравнения в виде экспоненты . Производная . Подставим значения свободного тока и производной тока в уравнение (8.1) (8.2) Уравнение (8.2), полученное из уравнения (8.1), называется характеристическим. - корень характеристического уравнения. - постоянная времени переходного процесса, измеряется в секундах. . Постоянную интегрирования А определяем с помощью начального условия. В соответствии с первым законом коммутации, . Получим Напряжение на индуктивности .
На рис. 8.2 изображены кривые переходного тока в ветви с индуктивностью и переходного напряжения на индуктивности. Переходный ток и напряжение по экспоненте стремятся к нулю. В инженерных расчетах полагают, что через интервал времени, равный (4 ÷ 5)τ, переходный процесс заканчивается.
Подключение R-L цепи к источнику постоянной ЭДС В схеме на рис. 8.3 до коммутации рубильник разомкнут. В результате коммутации рубильник замыкается и подключает R-L цепь к источнику постоянной ЭДС. Определим закон изменения тока i(t). . Принужденный ток в установившемся режиме после коммутации . В свободном режиме из схемы исключен внешний источник питания. Схема на рис. 8.3 без источника ЭДС ничем не отличается от схемы на рис. 8.1. Свободный ток определяется по формуле До коммутации рубильник был разомкнут, и ток в схеме отсутствовал. . . . Напряжение на индуктивности .
На рис. 8.4 изображены кривые переходного, принужденного, свободного токов и переходного напряжения на индуктивности. Свободный ток и напряжение на индуктивности плавно уменьшаются до нуля. В момент коммутации свободный и принужденный токи одинаковы по абсолютной величине.
Дата добавления: 2015-05-06; Просмотров: 1156; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |