Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример 13




ДОВЕРИТЕЛЬНЫХ ИНТЕРВАЛОВ

ОЦЕНКА НАДЕЖНОСТИ ОПРЕДЕЛЕНИЯ СРЕДНЕАРИФМЕТИЧЕСКОГО С ИСПОЛЬЗОВАНИЕМ

Доверительным называется интервал , который с заданной надежностью покрывает оцениваемый параметр. Для оценки математического ожидания случайной величины X, распределенной по нормальному закону, при известной дисперсии служит доверительный интервал

, (3.29)

где точность оценки;

n объем выборки;

математическоеожидание;

доверительная вероятность;

аргумент функции Лапласа;

и границы доверительного интервала.

Построить доверительный интервал для математического ожидания случайной величины X при Имеем:

 

                       
50,91 50,23 49,51 48,79 48,10 47,38 46,60 47,47 50,95 54,35 57,33 57,57

 

В качестве исходного положения примем , где - предельная величина погрешности измерения.

По табл. 3 (см. приложение) для и находим , откуда

Доверительный интервал будет

.

 

Задача 29.

Произведено 16 измерений теодолитом 4Т30П горизонтального угла полным приемом, со СКП 0,5'. Найдите доверительный интервал погрешностей теодолита с надежностью =0,95. Предполагается, что погрешности измерений распределены нормальному закону.

Задача 30.

Случайная величина X имеет нормальное распределение с известным СКП . Найдите доверительные интервалы для оценки неизвестного математического ожидания по выборочным средним , если объем выборки n =25 и задана надежность оценки =0,9.

Задача 31.

Решить задачи 13, 14 и 15 с использованием доверительных интервалов.

 




Поделиться с друзьями:


Дата добавления: 2015-03-31; Просмотров: 513; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.