Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Последовательность выполнения работы




 

Составляют схематический чертеж согласно заданному варианту. Уравнивание углов выполняется в следующем порядке.

4.3.1. Выбирают узловую линию, т.е. линию, примыкающую к узловой точке 5. При выборе в качестве узловой линии 4-5 (что рекомен­дуется сделать), решаемая система разделится на три оди­ночных теодолитных хода, которые опираются на исходные пункты.

4.3.2. Для каждого хода по координатам исходных пунктов решают обратные геодезические задачи и находят исходные дирекционные углы. Со схемы ходов выписывают в ведомость координат измеренные углы и исходные дирекционные углы по трем одиночным ходам. Подсчитывают суммы измеренных углов по каждому ходу.

4.3.3. Находят значения дирекционных углов узловой линии по каждому ходу по формулам:

, или (4.1)

где ;

- число углов, входящих в сумму и ;

– сумма углов правых по ходу;

– сумма углов левых по ходу.

Результаты вычислений выписывают в графу 2 табл. 4.1. Попутно в графу 3 записывают число углов n по каждому ходу.

Таблица 4.1

Вычисление окончательного значения дирекционного угла узловой линии

№ хода
                 
                 

 

4.3.4. Прежде чем приступить к нахождению средневесового значения дирекционного угла узловой линии необходимо проверить качество угловых измерений в теодолитных ходах. Для этого составляют разности вычисленных дирекционных углов и получают невязки. Первую разность составляют из дирекционных углов по двум ходам с наименьшим числом углов. Другую разность составляют из дирекционных углов, вычисленных по третьему ходу и одному из двух первых по формулам:

(4.2)

Невязки сравнивают с допустимыми значениями невязок, которые находят по формуле

, (4.3)

где и - количество углов в i -ом и j -ом ходах.

При допустимости невязок, производят уравнивание дирекционных углов.

Определяют веса вычисленных значений дирекционных углов узловой линии по формуле

, (4.4)

где – произвольный коэффициент, выбираемый так, чтобы веса выражались числами, близкими к единице. Веса записывают в графу 4 табл. 4.1 с округлением до 0,01.

Вычисляют средневесовое значение дирекционного угла узловой линии

, (4.5)

где – остатки, вычисляемые по формуле

(i = 1, 2, 3). (4.6)

После этого определяют угловые невязки по всем трем ходам по значениям дирекционного угла узловой линии для правых углов по ходу

(i = 1, 2, 3), (4.7)

а для левых углов по ходу

(i = 1, 2, 3). (4.8)

Контроль правильности вычисления дирекционного угла и невязок проверяют по формулам

, или .

За счет округления величины появляется ошибка округления . Для определения следует при делении в результате удерживать две дополнительные цифры.

В этом случае контролем является выражение

[ Pf ] .

Если в ходе имеются и правые и левые углы, то надо изменить знак произведений Pf в столбце 8 табл. 4.1 на противоположный, чтобы все произведения соответствовали только правым или только левым углам.

4.3.5. СКП измерения угла вычисляют по формуле

, (4.9)

где – СКП, вычисляемая по формуле

, (4.10)

где N – количество ходов.

4.3.6. Полученное окончательное значение дирекционного угла узловой линии принимают за исходное и записывают в графу "Дирекционные углы" ведомости вычисления координат.

Вычисляют теоретические суммы углов по каждому ходу, которые записывают в графу 2 ведомости вычисления координат. После этого вновь вычисляют невязки и сличают их с полученными в графе 7 табл. 4.1.

Полученные невязки распределяют с противоположным знаком поровну на углы соответствующих ходов (с округлением до 0,1´).

Для проверки правильности распределения невязок подсчитывают суммы исправленных углов. Они должны быть равны теоретическим суммам по каждому ходу.

По исправленным углам вычисляют дирекционные углы всех линий.

После этого переходят к уравниванию приращений координат.

4.3.7. Со схемы ходов выписывают в ведомость координат горизонтальные проложения сторон теодолитных ходов и координаты начальных исходных пунктов. Вычисляют приращения координат и их суммы по каждому ходу, а затем – координаты узловой точки по всем трем ходам по формулам

; (i = 1, 2, 3). (4.11)

Результаты вычислений записывают в табл. 4.2. по вычислению окончательных значений координат узловой точки 5.

Таблица 4.2

Вычисление окончательных значений координат узловой точки 5.

№ п/п , м , см , см , см , см , км k = , см , см , см , см , м
                             
                             

 

Для установления качества измерений длин сторон теодолитных ходов вычисляют относительные невязки по ходам: по первому вместе со вторым и по второму вместе с третьим. С этой целью составляют разности координат по соответствующим парам ходов; одна пара ходов берется с наименьшими длинами. При этом применяются следующие формулы:

; ; (4.12)

; ; (4.13)

; ; (4.14)

; , (4.15)

где – периметр i -ого и j -того ходов;

– невязка в периметре i -ого и j -того ходов.

Значения невязок приводят в таблице 4.3.

 

Таблица 4.3

  S, м Невязка  
 
1+2 2+3          
             

 

Относительные невязки не должны превышать 1:2000.

4.3.8. Выяснив, что невязки допустимы, вычисляют веса координат узловой точки

(i = 1,2,3), (4.16)

где – длина i –ого хода, выраженная в километрах,

k – произвольный коэффициент, выбираемый с таким расчетом, как и при вычислении дирекционных углов.

Результаты вычислений записывают в графу 9 табл. 4.2.

Затем находят средневесовое (окончательное) значение координат узловой точки

; . (4.17)

4.3.9. По этим координатам вычисляют невязки в приращениях по каждому ходу

; . (4.18)

Правильность вычисления средневесового значения координат узловой точки и невязок в приращениях по ходам контролируют по формулам

; . (4.19)

За счет округления величин и появляются ошибки округления и .

В этом случае контролирующими являются выражения

[ ] и [ ] .

4.3.10. Производят оценку точности планового положения узловой точки. Для этого:

– вычисляют СКП единицы веса

; ; (4.20)

вычисляют СКП абсцисс и ординат

; ; (4.21)

вычисляют СКП планового положения узловой точки

. (4.22)

4.3.11. Координаты узловой точки выписывают в ведомость вычисления координат и традиционным способом уравнивают приращения и вычисляют координаты точек в каждом ходе.

 




Поделиться с друзьями:


Дата добавления: 2015-03-31; Просмотров: 427; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.