КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Примеры. Задание 1: Найти частные производные следующих функций:
Задание 1: Найти частные производные следующих функций: 1) 2) 3) Решение: 1) При нахождении частной производной по
Аналогично, рассматривая
2) Имеем
3) Здесь
(так как при дифференцировании по Задание 2: Вычислить полный дифференциал функции Решение: Находим частные производные:
Таким образом, по формуле (1) получим Задания для практической работы 1. Найдите частные производные следующих функций: 1) 5) 8) 2. Найдите полные дифференциалы заданных функций: 1) 4) 3. Вычислите значения полных дифференциалов функций: 1) 3) 4) 4. Проверьте, что функция Вопросы для самоконтроля: 1. Что называется частной производной функции 2. Что называется частной производной функции 3. Дайте определение полного дифференциала функции в некоторой точке. 4. В чем заключается свойство инвариантности полного дифференциала первого порядка? Рекомендуемая литература: 1.1, 1.2, 1.3, 1.4, 1.5, 2.2, 2.3, 2.4, 2.5 СПИСОК ЛИТЕРАТУРЫ 1. Основная: 1.1 Богомолов Н.В. Практические занятия по математике: учеб. пособие для средних спец. учеб. заведений. – 6-е изд., стер. – М.: Высш. шк., 2003 – 495 с. 1.2 Григорьев В.П., Дубинский Ю.А. Элементы высшей математики: учеб. для студ. учреждений сред. проф. образования. – М.: Издательский центр «Академия», 2004. – 320 с. 1.3 Григорьев С.Г. Математика: учебник для студ. сред. проф. учреждений / под ред. В.А. Гусева. – 3-е изд., стер. – М.: Издательский центр «Академия», 2008. – 384 с. 1.4 Дадаян А.А. Сборник задач по математике: учеб. пособие. – М.: ФОРУМ: ИНФРА-М, 2008. – 352 с. – (Профессиональное образование). 1.5 Математика: учебник. – М.: ФОРУМ: ИНФРА-М, 2005. – 552 с. – (Серия «Профессиональное образование»)
2. Дополнительная: 1.1 Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. В 2 ч. Ч.1: учеб. пособие для вузов. – 6-е изд. – М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2005. – 304 с.: ил. 1.2 Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. В 2 ч. Ч.2: учеб. пособие для вузов. – 6-е изд. – М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2005. – 416 с.: ил. 1.3 Малыхин В.И. Высшая математика: учеб. пособие. – 2-е изд., перераб. и доп. – М.: ИНФРА-М, 2006. – 365 с. – (Высшее образование). 1.4 Шипачев В.С. Основы высшей математики: учеб. пособие для вузов / под ред. акад. А. Н. Тиханова. – 5-е изд., стер. – М.: Высш. шк., 2003. – 479 с.: ил. 1.5 Линьков В.М., Яремко Н.Н. Высшая математика в примерах и задачах. Компьютерный практикум: учеб. пособие / под ред. А.А. Емельянова. – М.: Финансы и статистика, 2006, - 320 с.: ил.
Информационные ресурсы:
Методические указания по выполнению практических работ для студентов специальностей 230115 Программирование в компьютерных системах 230401 Информационные системы (по отраслям)
Дата добавления: 2015-03-31; Просмотров: 566; Нарушение авторских прав?; Мы поможем в написании вашей работы! |